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ABSTRACT

This paper sets out a new approach that enables me to credibly identify dynamic interactions

among school inputs for the first time. To do so, I use detailed administrative data from North

Carolina to take advantage of an understudied feature of No Child Left Behind – the largest

accountability scheme ever implemented in the United States – whereby schools are effectively

held accountable only if there are forty or more students in their demographic group. This

variation allows me to compare the achievement of students who face accountability to those

who do not using a regression discontinuity (RD) design. I then develop a new identification

strategy that incorporates year-to-year treatment variation in the RD design to provide the

period-by-period randomization necessary to identify interactions in school inputs across time. I

find complementarities among inputs across time: RD estimates show that accountability in the

next year leads to a 0.18σ test score increase among those receiving treatment in the prior period

(relative to those who did not). The reduced-form responses suggest that educators have a sense

of the production technology, providing an opportunity to identify the technology structurally.

In particular, the reduced-form estimates capture school responses, which are then rationalized

by a theoretical model as the relative benefit of investment in each period, pinning down any

complementarities in inputs across time. With estimates of the dynamic technology in hand,

I consider the efficacy of alternative accountability schemes: conditioning on initial test scores

rather than prior test scores can both increase average achievement and reduce the pervasive test

score gaps that plague public education today.
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1 Introduction

When studying education policy, it is natural to adopt a dynamic viewpoint, given that

the learning process is inherently cumulative. Yet, such a perspective is rarely adopted in

empirical research. In no small part, this is due to the stringent requirements associated

with uncovering the underlying education production technology. For instance, identifying

interactions among inputs across time in an observational setting requires period-by-period

randomization – something tantamount to having “lightning [...] strike twice,” in the apt

phrase of Almond and Mazumder (2013).

I develop a new dynamic approach that allows me to credibly identify dynamic interac-

tions among school inputs for the first time.1 I do so in the context of accountability reforms

that provide explicit incentives to educators. As a starting point, I set out a theoretical model

to explore the way a dynamic human capital formation technology affects school responses

under fixed-target accountability schemes – those that set a common achievement target

for all students to attain. The model generates new insights into the dynamic incentives of

schools: specifically, I show that schools are incentivized to target students in early grades

and with ability below the achievement threshold, in order to raise those students gradually

toward the target. Further, dynamic complementarities sharpen these dynamic incentives

since fixed-target schemes allow schools to internalize the benefits of any interactions among

school inputs across time. In contrast, models featuring static technologies typically imply

that schools will target students near the proficiency threshold2 and cannot generate the

predictions of the dynamic model without contradicting important findings in the empirical

literature.3

1Heckman, Moon, Pinto, Savelyev, and Yavitz (2010), Aizer and Cunha (2012), and Malamud, Pop-
Eleches, and Urquiola (2016) explore dynamic complementarities between initial (or preschool) endowments
and later investments, while Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010) use
a structural model to identify complementarities among parental inputs. My focus is on credibly estimating
dynamic complementarities among school inputs, and exploring their implications for school behaviour and
incentive design.

2See, for instance, Reback (2008) and Neal and Schanzenbach (2010).
3Notably, Cunha and Heckman (2008) find that the marginal return to investment is higher in younger

children.
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Motivated by the theoretical analysis, I test the predictions arising from the dynamic hu-

man capital technology empirically using the largest fixed-target scheme ever implemented

in the United States: the No Child Left Behind Act of 2001 (NCLB). NCLB holds schools

accountable for student achievement levels both overall and in nine student subgroups, sev-

eral of which are based on race. Schools are only held accountable for a given subgroup

in a given year, however, if there are forty or more students in the subgroup in that year.

I begin by using the subgroup rule in a regression discontinuity (RD) design to calculate

the reduced-form policy effects of NCLB accountability on student achievement. Here, I

find that schools facing subgroup-specific accountability pressure show large improvements

for students in that subgroup, with those students receiving a 0.05σ and 0.03σ boost to

their math and reading scores, respectively. I also show that there is no discernable effect of

subgroup-specific accountability for students who do not belong to the accountable subgroup.

Next, I adapt the RD methodology to investigate how the underlying dynamic technology

influences the behavior of schools under NCLB. To test the theory predictions – that the

dynamic technology incentivizes schools to invest early in students and in those with ability

levels below the achievement threshold – one could look for differential treatment effects by

grade and student ability. This would only provide suggestive evidence, however, as the

underlying technology invalidates such an approach if there are complementarities in school

inputs across time. In that case, RD estimates would capture the effect of both period-specific

inputs and their interactions with prior inputs. I therefore use the dynamic structure of the

RD design, where schools are effectively randomized period-by-period, to condition the RD

estimate according to whether the school was treated or untreated in the prior period. Using

the fact that first period students were not present at treated schools in the prior period

(but their teachers were), I rule out the alternative story that differences in RD estimates

by prior treatment status arise from a dynamic complementarity in the teaching technology

(rather than in the student learning technology).

In line with the theoretical model, I find evidence of large accountability-induced test
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score increases for low-ability students in early grades. For instance, I estimate that sub-

group accountability raises math scores for grade 3 students with ability levels below the

achievement target by 0.12σ, which is significantly larger than for any other grade or ability

group. Further, RD estimates show that accountability in the second year leads to a 0.18σ

test score increase among students receiving treatment in the prior year, relative to when

they did not.

To interpret these findings, it is useful to consider two types of alternative model – those

with myopic educators (and schools), and without dynamic complementarities, respectively.

Models with myopic educators would predict that treatment effects should be most pro-

nounced for students around the achievement threshold, rather than for students well-below

it: models without dynamic complementarities would imply that treatment effects are in-

dependent of prior-year treatment. Against these, the reduced-form evidence points to the

existence of both forward-looking educators and dynamic complementarities (whereby the

marginal productivities of school inputs are higher in conjunction with prior inputs).

The strong school responses to the underlying dynamic technology indicate that edu-

cators know (or gain a sense of) that technology. Given the incentives in place, I can use

educators’ responses to NCLB to estimate the parameters of the technology structurally,

and in a credible way. In particular, the period-specific reduced-form estimates that condi-

tion on prior treatment status capture school responses to accountability. Assuming (as the

reduced-form results suggest) that the school knows the underlying technology, the theoreti-

cal model rationalizes the reduced-form estimates under the known NCLB incentive scheme,

allowing those responses to be interpreted as the relative benefit of student-specific changes

to school inputs in each period, which pins down any dynamic complementarities.4 In turn,

the parameter that determines the relative costs and benefits of inputs chosen by the school

is determined, given the complementarity parameter, from the first-order conditions of the

4To interpret the reduced-form responses as the relative benefit of student-specific changes to school
inputs in each period, I assume a similar functional form for the production technology to that in Aizer and
Cunha (2012).
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school’s problem. The structural results underline the importance of dynamic complemen-

tarities: they account for about fifty percent of the improvement in student achievement

under NCLB (relative to no accountability scheme).

Next, given the dynamic linkages in school inputs across time, I develop a framework for

dynamic counterfactual analysis that builds on a general approach in Macartney, McMillan,

and Petronijevic (2015). The framework uses the known incentives of various accountability

schemes to identify dynamic school responses under those schemes, drawing on the theoretical

model and the structural parameters. Using the dynamic framework, I can then simulate the

full distribution of student achievement under alternative accountability reforms, including

value-added schemes, which set student-specific targets based on prior test scores.

The counterfactual analysis generates several new insights. First, I propose a ‘multiperiod

value-added’ scheme that can counteract the well-known dynamic disincentive in value-added

schemes whereby schools avoid investing early in students since those investments create

higher achievement targets for the school to attain in future periods (see Macartney (2012)).

To avoid this type of dynamic disincentive, the multiperiod value-added scheme sets student-

specific targets based on test scores attained when the student entered the school. Second,

I quantify the impact of eliminating these dynamic disincentives: test score targets set

according to baseline test scores, as in the multiperiod value-added scheme, raise student

achievement by 0.18σ relative to a traditional value-added scheme. When deciding between

fixed-target and multiperiod value-added schemes, however, policymakers face a trade-off

between average student achievement and inequality.5 For example, replacing NCLB with a

multiperiod value-added scheme increases average test scores by 0.25σ, but also leads to a

twenty percent increase in the black-white test score gap. The test score gap widens under

value-added schemes because they motivate schools to focus on all students, while schools

under NCLB target low-ability students. Third, the newly-uncovered structural parameters

allow me consider alternative schemes that both increase average achievement and reduce

5A similar trade-off in a static setting is highlighted in Macartney et al. (2015).

4



inequality : in particular, altering the benefit schedule by raising the reward a school receives

when a black student (relative to another student) exceeds the threshold in the multiperiod

value-added scheme delivers the same black-white test score gap as NCLB, but where average

achievement is 0.24σ higher.

The methodology used in this paper provides a springboard for researchers and policy-

makers to understand the underlying human capital production technology in a variety of

other settings. In the context of estimating the effect of class size on student achievement,

for example, Krueger (2003) stated: “[t]here is no substitute for understanding the specifica-

tions underlying the literature” – a fitting quote in an area where researchers have reached

conflicting conclusions, potentially because alternative assumptions about the technology

have led them to estimate different empirical specifications. I highlight the importance of

estimating this technology in the context of incentive design in education – a particularly

relevant topic in light of the recent passing of the Every Student Succeeds Act, which allows

states to replace the fixed-target NCLB scheme with value-added schemes.6 The results

imply that using these value-added schemes will increase inequality and may potentially

lower average achievement. Yet, the insights in this paper also show how policymakers can

construct multiperiod value-added schemes to counteract the dynamic disincentives of tradi-

tional value-added reforms and help reduce the pervasive test score gaps that plague public

education today.

The rest of the paper is organized as follows: The next section provides background to

NCLB and places the analysis alongside the associated literature. Section 3 introduces the

theoretical model, which predicts school responses to fixed-target accountability schemes

under a dynamic human capital formation technology. In Section 4, I provide an empirical

framework to test the model predictions and to determine whether there are dynamic com-

plementarities in school inputs; I also discuss the data set. I present reduced-form results

6The Every Student Succeeds Act still requires a fixed-target scheme to be a component of a state’s
accountability system. The law, however, allows states the flexibility to incorporate additional components
to their accountability scheme, including value-added targets.
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in Section 5, and use these to identify accountability responses to the model structurally

in Section 6. In Section 7, I perform counterfactual simulations, and discuss the results in

Section 8. Section 9 concludes, drawing out the broader significance of the research.

2 Background and Literature

The No Child Left Behind Act of 2001 (NCLB) – the major education initiative of the

Bush administration – aimed to raise educational achievement and to “clos[e] the achievement

gap between high- and low-performing children, especially the achievement gaps between

minority and nonminority students, and between disadvantaged children and their more

advantaged peers” (No Child Left Behind Act of 2001, 115 STAT. 1440). In pursuit of that

goal, NCLB incentivized schools to improve student achievement by enforcing progressively

harsher corrective action, including school takeovers,7 when a school failed to meet Adequate

Yearly Progress (AYP). AYP was determined by the proportion of students whose test scores

fell below a pre-set ‘proficiency target,’ based on whether a student attained a pre-defined

score on the end-of-grade standardized math and reading tests. If the proportion of proficient

students in a school was below the state target, in either math or reading, it failed AYP.8

Test results for grades 3-8 were used for NCLB purposes in elementary and middle schools.9

A major feature of NCLB involves the subgroup rules that are embedded in the law.

According to these, a school has to reach its proficiency target both overall and in each of

nine subgroups: black, Hispanic, white, Asian, multi-racial, native American, economically

disadvantaged, limited English-proficient and students with disabilities. For example, in

2003, a school in North Carolina passed AYP if at least 74.6 percent of their student body

7For a description of these sanctions and their effects, see Ahn and Vigdor (2014).
8There were some exceptions written into the law such that a school could meet AYP even if its profi-

ciency rate was below the target. The two main exemptions were the confidence-interval and safe harbour
exemptions (see Spellings (2005) for more information). In addition, there are additional targets that the
school also must meet to pass AYP: more than 95 percent of students overall and in each subgroup have to
take the end-of-grade tests and the school is required to have 90 percent attendance. In North Carolina, less
than two percent of schools in my sample fail one of these requirements

9High schools faced additional targets, including targets relating to graduation rates.
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and 74.6 percent of students in each of the nine subgroups were labelled proficient. Since

one of the subgroups in a school is often lower-performing than the school as a whole, many

schools reach the overall target, but fail AYP due to the subgroup targets.10

Schools may have few students in a given subgroup, which could make their ability to pass

the subgroup targets hinge on a small number of students. Thus, legislators incorporated

a rule in the law that there must be a minimum number of students in a given subgroup

for the school to be held accountable for that subgroup’s proficiency target. The threshold

number of students varied by state: in North Carolina, which is the focus of my analysis,

the threshold is forty students. Therefore, any school in North Carolina with forty or more

students in a subgroup faced accountability pressure for that subgroup, while schools with

less than forty students did not. In Section 4, this rule provides identifying variation for the

methodology I develop to investigate the causal effects of NCLB on human capital formation.

Treatment Status: The count of the number of students in a subgroup only includes

students in grades 3 and higher since students below grade 3 are not subject to NCLB. These

counts are complicated, however, by NCLB rules whereby students are used for accountability

purposes only if they are present for seventy-five percent of school days (about 140/180 school

days). Accordingly, schools often had fewer than forty students in a subgroup take the end-

of-grade test but were held accountable for that subgroup, and vice versa.11 Thus, schools

with around forty students in a subgroup were uncertain whether that subgroup would be

held accountable under NCLB until several months into the school year.

The uncertainty over treatment status for schools around the forty student threshold may

dampen school responses in the empirical results, attenuating the reduced-form results in

Section 5 towards zero. For the structural estimation exercise, underestimation of reduced-

form parameters may lead to some underestimation of the structural parameters, though

10Stullich et al. (2006) show that among schools failing AYP, 41 percent passed the overall proficiency
target but failed AYP as one or more subgroups did not reach their proficiency target.

11For example, a school that had forty disadvantaged students in September with a student leaving
anytime November-March would not know whether its disadvantaged students were used for NCLB purposes
until the student left.
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this is unlikely to be a serious concern given that the parameters are identified primarily by

the ratio of the reduced-form estimates.12

Sorting: Because classroom assignments are generally set at the start of the school year,

when treatment status is uncertain, the ability of schools to sort students differentially across

classes and teachers by subgroup accountability status is limited. Thus, the mechanism

generating the effects of accountability on student achievement in this paper are unlikely to be

caused by reallocating students to better teachers or peers,13 which Section 8.2 verifies. This

indicates that, to a first-order approximation, it is reasonable to abstract from student sorting

in the counterfactual analysis. In addition, the absence of sorting aligns with the fundamental

motivation behind accountability schemes: accountability raises educator effort, rather than

reallocating resources across students. Section 8.2 presents evidence supporting the view

that increases in teacher effort are generating the improvements in student achievement.

2.1 Literature

Understanding the full effects of accountability schemes requires knowledge of the under-

lying human capital production technology. Particular assumptions about the production

technology imply distinct empirical specifications even with a given data set, which may in

turn generate widely differing conclusions (Todd and Wolpin, 2003). This has been an issue

in several literatures, notably class size reduction – see Krueger (1998, 2003). Given their

appeal, recent state-of-the-art papers have begun formulating and estimating cumulative pro-

duction functions (Todd and Wolpin, 2007; Cunha and Heckman, 2008; Cunha, Heckman,

and Schennach, 2010), emphasizing the role of parental inputs and dynamic complementar-

ities among them. For example, Cunha and Heckman (2008) and Cunha, Heckman, and

Schennach (2010) use a structural model to identify the skill formation technology and find

12This idea is elaborated on in Section 6, which notes that a ten percent underestimation of the RD
estimates would lead to a five percent rise in the structural parameters.

13A large amount of evidence in the literature indicates that better teachers (Rockoff, 2004; Kane et al.,
2013; Chetty et al., 2014b) and peers improve student achievement (Sacerdote, 2001; Zimmerman, 2003;
Carrell et al., 2009).
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evidence of dynamic complementarities among parental inputs.

School inputs have been the focus of a vast empirical literature in education, but the

literature has not examined possible dynamic complementarities among them. This is likely

due to the serious challenges involved in estimating school input complementarities. In

an observational setting, identification of any dynamic input complementarity would require

exogenous variation that affected a set of individuals in one period, and then for the same set

of individuals to receive another exogenous input shock in a second period – a configuration

akin to “asking for lightning to strike twice” (Almond and Mazumder, 2013).

In light of these stringent requirements, several papers provide evidence of dynamic com-

plementarities between child ability and early education inputs by calling attention to the fact

that the effects of early investment are larger among high-ability children (Heckman et al.,

2010; Aizer and Cunha, 2012; Lubotsky and Kaestner, 2016).14 Malamud, Pop-Eleches, and

Urquiola (2016) examine the strength of complementarities between initial endowments and

later investments in an appealing way by combining a shock to initial child ability with a later

shock to schooling inputs. While they find no direct evidence of dynamic complementarities,

the authors uncover suggestive evidence that parents and children behave in ways that undo

such complementarities. I add to this literature (which Appendix Section C describes more

in-depth) by providing evidence of dynamic complementarities among schooling inputs for

the first time, using successive exogenous shocks to school investments.

NCLB has been studied widely, with several careful analyses concluding that NCLB

accomplished one of its main goals in that it improved test scores (Jacob, 2005; Dee and

Jacob, 2011). Critics have pointed out, however, that NCLB created many perverse in-

centives, including teaching to the test (Koretz, 2008), manipulating the test-taking pool

(Jacob, 2005; Figlio, 2006), or even altering the calorie content of school meals (Figlio and

Winicki, 2005).15 Since school rewards are based on students exceeding a preset achievement

14Several papers also find that the effects of interventions are larger among younger children (Cunha and
Heckman, 2008; Chetty et al., 2016), which is consistent with dynamic complementarities.

15See Figlio and Loeb (2011) for a more in-depth review of gaming under NCLB.
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target, researchers have also established that schools respond to NCLB by targeting their

resources towards students with predicted test scores near the achievement target (Krieg,

2008; Reback, 2008; Springer, 2008; Neal and Schanzenbach, 2010).

The subgroup rules embedded in NCLB have been studied extensively.16 Prior papers,

which generally use difference-in-differences methodologies, conclude that students belonging

to subgroups facing accountability pressure receive a boost in their test scores relative to

other students in the school (Krieg, 2011; Lauen and Gaddis, 2012; Gaddis and Lauen,

2014).17 Similar to this paper, Farber (2016) uses Texas’s subgroup cutoff rule to estimate

the policy effect of subgroup accountability. While my paper reports these policy estimates

– roughly similar to those in Farber (2016) – my main focus is on identifying the underlying

technology and its importance for the effects, and design, of accountability schemes.

3 Model

This section lays out a theoretical model to investigate school responses to an account-

ability scheme under a dynamic human capital accumulation technology. In line with the

empirical application, I focus on school responses under fixed-target accountability schemes.

The theoretical model yields two testable predictions not readily explained by a static model.

I test these predictions in Section 5.3. The theoretical model also supplies the backbone for

the structural estimation and the dynamic counterfactual framework in Sections 6 and 7,

where I quantify the efficacy of alternative accountability schemes.

16Studies have also examined subgroup rules in other types of accountability schemes. For example, see
Deming et al. (2016).

17In contrast, Sims (2013) uses the fact that subgroup rules make otherwise-similar schools face different
probabilities of failing AYP and finds that the subgroup accountability rule leads to lower future student
achievement for all students.
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3.1 Technology

Human capital for student i at time t is given by student achievement, Ait, which is a

function of the full history of school input spending up to time t, Sit={Si1, ..., Sit}, student

innate ability, αi, and unobserved random factors, εit. Under a general production function,

student i’s achievement at any time t is given by:18

Ait = At(αi, Si1, ..., Sit, εi1, ..., εit) . (3.1)

I impose several plausible restrictions on the general technology. First, the noise in the

production technology, εit, is assumed to be unimodal with zero mean, symmetric, exhibiting

no serial correlation, and having an additively separable form, with its cdf and pdf given by

H(·) and h(·), respectively. Thus,

Ait = ft(αi, Si1, ..., Sit) + εit . (3.2)

Second, school inputs always affect student achievement non-negatively (∂ft(·)
∂Sit
≥ 0 ∀i, t) and

student achievement without any school inputs is given by the student’s ability, so that

ft(αi,0) = αi. I also assume that ∂ft(·)
∂Sit

≥ ∂ft(·)
∂Si,t+1

, in line with results from Cunha and

Heckman (2008), indicating that investment yields potentially higher returns for younger

children.19 Dynamic complementarities in this production technology imply that school

inputs in one period increase the marginal productivity of inputs in later periods, and arise

iff ∂2ft(·)
∂Sit∂Si,t−1

> 0 (Cunha and Heckman, 2007).

18Family inputs are omitted in this model, implying that any parental responses are subsumed in the
school inputs (see Todd and Wolpin (2003)). Since schools should take these parental responses into account
when making investment decisions, parental responses change the interpretation of Sit from solely the effect
of school inputs to the combined effect of school inputs and their associated parental responses.

19This assumption is only required for Proposition 1. Without it, an extremely high marginal productivity
of inputs in period t + 1 relative to period t could make it possible that schools optimally invest such that
Si,t+1 > Sit.
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3.2 Incentive Scheme

Each school has a total of N students. Since each student remains in the school for T

years,20 the school maximizes the number of students who exceed the achievement threshold

in the current time period and for subsequent time periods t+ 1, ..., T . Under a fixed-target

accountability scheme, the policymaker sets an achievement threshold, A∗,21 and provides

rewards to schools with a benefit b for each student who exceeds this threshold. In line with

the empirical application, the benefit is only given if a student is held accountable, making

benefits both student- and period-specific. Let Γit = 1 denote the case where student i is

held accountable and Γit = 0, the case where student i is not held accountable in period t,

where Γit follows a Bernoulli distribution with T trials and a ‘success parameter’ pi, so that

Γit ∼ B(T, pi). Benefits from exceeding the achievement threshold are therefore given by:

bit =


b if Γit = 1

0 if Γit = 0 .

(3.3)

In each period, the model timing is such that schools observe the realization of Γit before

choosing the level of inputs for that period, Sit. For future time periods t+1, ..., T , the

school forms an expectation over whether the student will be treated, E[Γit = 1]. Under

subgroup accountability, students within a subgroup are either held accountable or not, so

I assume that schools form identical expectations over Γit for these students. I also assume

that treatment is not serially correlated (i.e., P (Γi,t+1 = 1|Γit = 1) = P (Γi,t+1 = 1|Γit = 0))

– capturing the essence of the empirical strategy where treatment statuses in periods t and

t+1 are as good as random. In addition, I assume that schools have rational expectations,

20In my empirical application, the time horizon varies by student. For convenience, I do not make T
student-specific in the theoretical model, and so the model is equivalent to the problem faced by a school for
a given student cohort.

21For convenience, the threshold is set identically in each grade. If the achievement threshold varies
each period, then Proposition 2 requires a “for some t” qualifier to account for a fixed-target scheme with
achievement thresholds that vary appreciably across grades. Empirically, the achievement threshold does
not vary substantially across grades, although my structural estimation allows the achievement threshold to
differ in each period.
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so that E[Γit=1] = pi, ∀t.

Schools face a convex cost of resources, c(Sit), which makes the costs of inputs student-

specific (rather than classroom-specific), in line with evidence provided in Section 8.2, which

rules out large within-class spillovers. Under a fixed-target scheme, the school’s payoff for

each student i is Uit = Γit · b · 1Ait≥A∗ − c(Sit), which in expectation is:

Uit = pi · b ·H[Ait −A∗]− c(Sit) . (3.4)

The school’s optimization problem in period t can therefore be written as:

max
{Sit}i∈N

Γit · b ·H(Ait −A∗)− c(Sit) +
N∑
i

T∑
t+1

[pi · b ·H(Ait −A∗)− c(Sit)]

subject to: Sit ≥ 0 ∀i, t . (3.5)

The first-order conditions for each i across all time periods are given by:

∂Ui
Sit

: Γit · b · h[Ait −A∗]
∂ft(·)
∂Sit

+ ...+ pi · b · h[AiT −A∗]
∂fT (·)
∂Sit

≤ c′(Sit)

...
...

...

∂Ui
SiT

: Γit · b · h[AiT −A∗]
∂fT (·)
∂SiT

≤ c′(SiT ) ,

(3.6)

leading directly to two propositions: schools invest more resources in earlier periods, and

they target students with ability below the achievement threshold.

Proposition 1 If schools invest optimally, Sit ≥ Si,t+1 ≥ ... ≥ SiT , ∀i in expectation.

Proof.: See Appendix A.

The intuition behind Proposition 1 is as follows: input levels are higher in earlier periods

since an increase in school inputs this year raises the likelihood of a student exceeding the

achievement threshold for this year and all future years, which the school internalizes when
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making its input decisions. Therefore, a year t increase in school inputs for student i raises

her probability of exceeding the threshold in that year, as well as t+1,..., T , while the same

increase to school inputs in year t+1 only raises her probability of exceeding the threshold in

years t+1,..., T . Convex costs and dynamic complementarities make it suboptimal to spend

all the inputs in the first period.

Corollary School inputs are higher when schools expect that it is more (rather than less)

likely that a student will be held accountable.

The corollary follows the same logic as Proposition 1: if a school expects that a student

is more likely to be held accountable in the future, then the benefit of raising school inputs

this period increases as it raises the likelihood that the school gets a benefit if the student

exceeds the achievement threshold. This corollary suggests a direct test of whether schools

internalize the future benefits generated by the cumulative nature of the production technol-

ogy: if schools internalize these benefits, then this indicates that schools have a sense of the

underlying technology, providing a foundation for the structural identification of the learning

technology through the theoretical model. I directly test this corollary in Subsection 8.1.

Proposition 2 Within a subgroup, school inputs are highest for some student(s) with innate

ability below the achievement threshold.22

Proof.: See Appendix A.

To provide intuition for Proposition 2, Figure 1 provides a stylized representation of the

marginal benefit of school inputs as a function of student ability for some period t < T .

The shape of the marginal benefit profile depends on the distribution of the error terms: a

single-peaked distribution (such as normal or type I extreme value) produces an inverse-U

shape profile. In addition, I compare the resulting marginal benefit profile to a static model

where schools simply maximize the number of proficient students in a given year, as in Neal

22If no students with innate ability below the achievement threshold exist at a certain school, then the
school targets the lowest ability student(s).
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Figure 1: Marginal Benefit of Investment by Ability under a Fixed-target Scheme

(a) Dynamic Relative to Static Model
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Notes: Figure 1(a) compares a marginal benefit profile of school inputs in my model to that of a model of
myopic educators, as in Neal and Schanzenbach (2010). Figure 1(b) then compares the marginal benefit
profile in my model with and without dynamic complementarities. The solid vertical line at A∗ represents
the achievement target. On the x-axis, ξ represents a constant to show the distance from the achievement
target, A∗, in this stylized example.

and Schanzenbach (2010).23

In the static model, schools receive the highest benefit by investing in students right

around the achievement threshold (in Figure 1(a), αi ≈ A∗). Under a dynamic model, in

23For the static case, the school maximization problem is written as: max
{Si}i∈N

N∑
i

[Γi ·b·H(Ai −A∗)− c(Si)]

subject to: Si ≥ 0 ∀i.
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contrast, the marginal benefit of school inputs is highest among low-ability students who lie

well below the achievement threshold. This arises since schools take into account the fact that

increases in school inputs this year push students closer to the achievement threshold in future

years, when future inputs will propel those students above the threshold. This capacity to

raise students gradually toward the achievement threshold moves the marginal benefit profile

to the left compared to the static model, such that the marginal benefit is highest for students

with ability significantly below the achievement threshold (in Figure 1(a), αi≈A∗−ξ, where

ξ represents the distance to the achievement threshold). Additionally, since the static model

does not take into account how current inputs increase the likelihood of students exceeding

the threshold in future periods, the marginal benefit of period t investment is much higher

in the dynamic case (generating the upward shift in the dynamic model). Figure 1(b) shows

that dynamic complementarities increase both the marginal benefit of investment and the

desire to target low-ability students.

While neither Propositions 1 nor 2 requires dynamic complementarities to hold, the pres-

ence of dynamic complementarities strengthen their findings since they raise the marginal

benefit of early inputs from the school’s perspective. Therefore, if the school knows that the

underlying technology features dynamic complementarities, current achievement depends

upon prior levels of inputs in two ways: first, directly through the technology, and, second,

by the school raising current period inputs due to an increase in the marginal benefit of in-

vestment. Consequently, modeling school responses to the underlying production technology

is necessary to structurally identify the dynamic complementarity parameter.

4 Empirical Framework

I now describe my empirical approach, built around a regression-discontinuity (RD) de-

sign. The RD design provides a reduced-form link between subgroup-specific accountability

and student achievement. Furthermore, it generates year-to-year variation in treatment,

16



allowing me to test for dynamic complementarities as well as the model predictions from

Section 3.

4.1 Regression Discontinuity

I use a regression discontinuity (RD) design to obtain reduced-form estimates of the

effects of accountability on student achievement. The design takes advantage of the rule

that schools with more than forty students in a given subgroup are required to meet an

achievement target for that subgroup, while schools with less than forty students do not.

The essence of the empirical strategy is to compare outcomes in schools with slightly fewer

than forty students to those with slightly more.

To illustrate the idea, consider a school with thirty-nine disadvantaged students to one

with forty disadvantaged students. Due to the policy rule, the school with forty disadvan-

taged students must meet the accountability target for disadvantaged students in order to

pass AYP, while the school with thirty-nine disadvantaged students does not face the same

requirement. Since schools with forty disadvantaged students are unlikely to differ much

from schools with thirty-nine disadvantaged students, we can compare outcomes of disad-

vantaged students across the two schools to examine the effect of NCLB’s subgroup-specific

accountability provisions.

As we incorporate schools further away from the forty-student cutoff into the analysis,

possible confounding relationships between the number of students in a subgroup and student

achievement may appear, making it necessary to control for the number of students belonging

to a subgroup in a school through some function. To keep with the spirit of comparing schools

close to the cutoff, I restrict attention to only include schools around the forty student

cutoff within a bandwidth of five students, though Appendix Figure A3 shows robustness to

alternative bandwidths.
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Formally, denote a given subgroup by the subscript g. I then regress:

ysgt=γ1+τi∈gTsgt + θ1Λ(Xsgt) + φ1(Λ(Xsgt)∗Tsgt) + λg + θt + δ1Zsgt + εgst,

for wsgt ≤ Xsgt ≤ wsgt, (4.1)

where ysgt represents the average standardized test score of students who belong to subgroup

g in school s at time t, Xsgt is the number of students in a given subgroup g in school s at

time t relative to the forty student threshold (i.e., subgroup enrollment minus forty), Tsgt is

an indicator equal to one if there are forty or more students in subgroup g in school s at time

t (i.e., Tsgt ≡ 1{Xsgt ≥ 0}), Λ(·) is a flexible function to control for a possible relationship

between the number of students in a subgroup and student achievement,24 Zsgt is a set

of controls, including prior test scores and demographic characteristics, wsgt represents the

bandwidth, and λg and θt are subgroup and year fixed-effects, respectively. The coefficient

of interest in Equation 4.1 is τi∈g, which – under assumptions that are tested in Section 5 –

represents the causal effects of NCLB subgroup-specific accountability pressure on student

achievement for students who belong to subgroup g.

Difference-in-Discontinuity: Spillovers are investigated in the above framework by

estimating the effect of subgroup-specific accountability for students who do not belong to

the accountable subgroup. Denote whether or not a school-subgroup-year entity consists of

students belonging to subgroup g with the subscript b (i.e., b=1 if i∈g and zero otherwise).

I then estimate the effect of subgroup-accountability on students who belong and who do not

24For the main analysis, I use a linear functional form. Appendix Table A4 examines robustness to
alternative control functions.
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belong to the subgroup simultaneously through a difference-in-discontinuity regression:25

ysgbt=γ1+τi/∈gTsgt + θ1Λ(Xsgt) + φ1(Λ(Xsgt)∗Tsgt)+ λg + θt + δ1Zsgbt

+Bsgbt[γ2 + τdiffTsgt + θ2Λ(Xsgt) + φ2(Λ(Xsgt)∗Tsgt) + λg + θt + δ2Zsgbt] + εgsbt,

for wsgt ≤ Xsgt ≤ wsgt, (4.2)

where Bsgbt is an indicator equal to one if students belong to subgroup g, and all other

variables are defined in Equation 4.1. The three coefficients of interest from Equation 4.2

are: τi∈g ≡ τi/∈g + τdiff (same parameter as in Equation 4.1), τi/∈g, and τdiff. τi/∈g represents

the causal effects of NCLB subgroup-specific accountability pressure on student achievement

for students who do not belong to subgroup g, while τdiff represents the differential benefit

of subgroup accountability accruing to students belonging to an accountable subgroup com-

pared to those who do not. If there are no spillovers from subgroup accountability (i.e.

τi/∈g = 0), then τdiff has the same causal interpretation as τi∈g. With spillovers, however,

τdiff could either under- or over-represent the effect of accountability on students belonging

to subgroup g. On one hand, schools may appropriate resources from other students to

improve the achievement of students in subgroup g, lowering their achievement; on the other

hand, schools may raise their total level of effort or there may be peer effects, benefiting all

students. To allow for possible spillovers, the estimates of τi∈g are interpreted as the causal

effect of accountability in this paper.

Equations 4.1 and 4.2 estimate local average treatment effects (LATE). As already de-

scribed in Section 2, schools may not know their treatment status around the forty student

threshold until several months into the school year, implying that the LATE may underes-

timate the average treatment effect away from the threshold. Section 6 discusses the effect

of this underestimation on the structural estimates. Equations 4.1 and 4.2 represent sharp

RD designs as there is perfect adherence to the subgroup rule under NCLB (see Section 5).

25See Grembi et al. (2016) for a description of the difference-in-discontinuity estimator.
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4.2 Identifying Dynamic Complementarities

Single period random assignment does not separately identify each period’s treatment

effect (or their interactions) since they are perfectly collinear, implying that dynamic com-

plementarities cannot be identified without the year-to-year treatment variation provided

by multi-period randomization (Ding and Lehrer, 2010; Almond and Mazumder, 2013). In

this subsection, I extend the RD framework, which provides treatment variation that is “as

good as randomly assigned” (Lee and Lemieux, 2010), to incorporate the year-to-year treat-

ment variation embedded in the NCLB accountability setting. This yields the multi-period

randomization necessary to test whether the student learning technology features dynamic

complementarities. Intuitively, the technology features dynamic complementarities when RD

estimates are larger among those receiving treatment in the prior period, relative to those

who did not.

Define the RD estimator τ
(K,...,K,T )
t , where the subscript t denotes the period (where grade

3 is normalized to period t=1) and the superscript (K, ...,K, T ) denotes the treatment effect

in period t for a student with treatment history (K, ...,K), where K ∈ {T, U}, with T and

U representing the ‘treated’ and ‘untreated’ cases, respectively. For exposition, suppose that

the production technology follows the simple form:26

ft(αi, S
K
i1 , ..., S

(K,...,K)
it ) = αi +

t∑
t=1

S
(K,...,K)
it +

t∑
j=1

βt−j,tS
(K,...,K)
i,t−j S

(K,...,K)
it , (4.3)

where the superscript (K, ...,K) (with K ∈ {T, U}) denotes the schooling inputs for student

i in period t with a treatment history of (K, ...,K). This superscript allows for the schooling

inputs to differ among students with different treatment histories, which is likely to occur if

educators believe that the marginal productivity of investment is higher when students are

treated in prior periods. With the above technology, I consider the structural parameters

identified by the RD estimators in a two-period framework.

26In this section, the result follows from the more general technology where possible complementarities
among ability and school inputs may exist.

20



Imagine N students entering school s in period one. Student achievement in period one,

A
(K)
i1 , can take two possible values: the student can be ‘treated’ (i.e., held accountable),

A
(T )
i1 , or ‘untreated’ (i.e., not held accountable), A

(U)
i1 . Given the production technology in

Equation 4.3, the period one RD estimator, τ
(T )
1 , identifies:

τ
(T )
1 =

1

N

N∑
i

[A
(T )
i1 − A

(U)
i1 ] =

1

N

N∑
i

[f1(αi, S
(T )
i1 )− f1(αi, S

(U)
i1 )] = S̄1

(T ) − S̄1
(U)

, (4.4)

where S̄1
(T ) ≡ 1

N

N∑
i

S
(T )
i1 and S̄1

(U) ≡ 1
N

N∑
i

S
(U)
i1 denote average school inputs for ‘treated’

and ‘untreated’ students, respectively. Since there are no prior schooling inputs that interact

with period one treatment, τ
(T )
1 captures the effect of the extra school resources that an

accountable student receives, relative to a student that is not held accountable.

In period two (denoted by the ‘2’ subscript), the students from period one advance a

period and their (average) achievement takes four possible values: treated in both periods,

Ā
(T,T )
2 , untreated in both periods, Ā

(U,U)
2 , treated in period one but not two, Ā

(T,U)
2 , and

treated in period two but not one, Ā
(U,T )
2 . A period-two RD estimator compares average

achievement for students who are treated in period two with those who are not, regardless

of prior treatment (i.e. Ā
(U,T )
2 + Ā

(T,T )
2 − [Ā

(U,U)
2 + Ā

(T,U)
2 ]). To identify accountability-induced

input changes in period two, I separate out the period-two RD estimator into two cases: the

student was treated in period one, τ
(T,T )
2 , and the student was not treated in period one,

τ
(U,T )
2 .

In the joint treatment case, τ
(T,T )
2 compares average student achievement when the stu-

dent is treated in both periods, Ā
(T,T )
2 , to average student achievement when the student is

only treated in period one, Ā
(T,U)
2 . Conversely, τ

(U,T )
2 compares average student achievement

when the student is treated in period two but not one, Ā
(U,T )
2 , to when the student is never
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treated, Ā
(U,U)
2 . In that case, the estimators identify:

τ
(T,T )
2 = Ā

(T,T )
2 −Ā(T,U)

2 =f2(ᾱ, S̄
(T )
1 , S̄

(T,T )
2 )−f2(ᾱ, S̄

(T )
1 , S̄

(T,U)
2 )

= S̄
(T,T )
2 − S̄(T,U)

2 +
1

N

N∑
i

β12S
(T )
i1 (S

(T,T )
i2 − S(T,U)

i2 )

τ
(U,T )
2 = Ā

(U,T )
2 −Ā(U,U)

2 =f2(ᾱ, S̄
(U)
1 , S̄

(U,T )
2 )−f2(ᾱ, S̄

(U)
1 , S̄

(U,U)
2 )

= S̄
(U,T )
2 − S̄(U,U)

2 +
1

N

N∑
i

β12S
(U)
i1 (S

(U,T )
i2 − S(U,U)

i2 ) .

(4.5)

(4.6)

Comparing these two estimators supplies a test for whether the student learning technol-

ogy features dynamic complementarities:

Proposition 3 τ
(T,T )
2 > τ

(U,T )
2 iff β12 > 0.27

Proof. Follows almost immediately from: (i) achievement is increasing in schooling inputs,

making S̄
(T )
t >S̄

(U)
t , and (ii) schools respond to the increased marginal benefits under dynamic

complementarities by setting S
(T,T )
it ≥S(U,T )

it . See Appendix A for the formal proof.

It is instructive to consider two cases where τ
(T,T )
2 − τ (U,T )

2 > 0: (i) when educators do

not alter schooling inputs in response to prior treatment histories, and (ii) when educators

do. When educators do not respond to treatment history – perhaps because they do not

know the underlying student learning technology – then it must be that S
(T,T )
i2 = S

(U,T )
i2 and

S
(T,U)
i2 = S

(U,U)
i2 ∀i. The difference between the two estimators is given by:

τ
(T,T )
2 − τ (U,T )

2 =
1

N

N∑
i

β12(S
(T )
i1 − S

(U)
i1 )(S

(K,T )
i2 − S(K,U)

i2 ), where K ∈ {T, U} . (4.7)

The difference between τ
(T,T )
2 and τ

(U,T )
2 therefore simply captures the average interaction

between the (student-specific) treatment effects in periods one and two.

When educators respond to prior treatment histories and β12 > 0, they will set S
(T,T )
it >

S
(U,T )
it since dynamic complementarities make the marginal benefit of period two investment

27A similar proof shows that τ
(T,T )
2 < τ

(U,T )
2 iff β12 < 0 (i.e., school inputs are dynamic substitutes).
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larger when the student is treated in period one. In this case, the difference between τ
(T,T )
2

and τ
(U,T )
2 is given by:

τ
(T,T )
2 − τ (U,T )

2 = S̄
(T,T )
2 − S̄(U,T )

2 +
1

N

N∑
i

β12(S
(T )
i1 − S

(U)
i1 )(S

(T,T )
i2 − S(U,T )

i2 ) , (4.8)

since, because period two is terminal, we have that S
(T,U)
i2 =S

(U,U)
i2 =0. The difference between

the two estimators is much larger than in Equation 4.7 since this difference incorporates both

the direct effect of the dynamic complementarity and school responses to the higher marginal

productivity of investment. I use the structural framework in Section 6 to separate out these

two components and identify β12.

Identification: Identification of τ
(T )
1 is straightforward: since it only requires randomiza-

tion in period one, the RD regression given by Equation 4.1 – restricted to period one – esti-

mates τ
(T )
1 . Estimation of τ 2

(1,1) and τ 2
(0,1), however, require randomization in periods one and

two. Fortunately, NCLB’s year-to-year treatment variation supplies this dual-randomization,

which I implement through the following multi-dimensional RD regression:28

ysgt=γ1+τ
(U,T )
2 Tsgt+θ1ν(Xsgt, Xsg,t−1)+φ1(ν(Xsgt, Xsg,t−1)∗Tsgt)+λg+θt+δ1Zsgt

+Dsg,t−1[γ2+
[
τ

(T,T )
2 − τ (U,T )

2

]
Tsgt+θ2ν(Xsgt, Xsg,t−1)+φ2(ν(Xsgt, Xsg,t−1)∗Tsgt) + λg

+ θt + δ2Zsgt] + εgst, for (−wsgt,−wsg,t−1) ≤ (Xsgt, Xsg,t−1) ≤ (wsgt, wsg,t−1) , (4.9)

where Tsgt is an indicator variable equal to one if subgroup g in school s was held accountable

in period two, Dsg,t−1 is an indicator variable equal to one if subgroup g in school s was held

accountable in period one, and ν(Xsgt, Xsg,t−1) is flexible control over the multi-dimensional

space defined by the running variables Xsgt and Xsg,t−1, which determine treatment in periods

two and one, respectively. All other variables are defined as in Equation 4.2.

The multi-dimensional regression defined by Equation 4.9 uses random treatment varia-

28See Dell (2010), Papay et al. (2014), and Porter et al. (2017) for the nascent literature on identification
and estimation in a multi-dimensional RD framework.
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tion from periods one and two. Identification of τ
(U,T )
2 comes from the comparison between

two types of school: one with subgroup enrollment of thirty-nine students in period one

and forty students in period two, to one with subgroup enrollment of thirty-nine students

in periods one and two. Similarly, τ
(T,T )
2 is identified by comparing schools with subgroup

enrollment of forty in periods one and two to schools with subgroup enrollment of forty in

period one and thirty-nine in period two. Thus, the parameters are identified from a student

entering or exiting a school randomly in both periods one and two. Controlling for subgroup

enrollment in both periods one and two and restricting the sample to observations with sub-

group enrollment within the bandwidth of five in both periods ensures that the parameters

are identified from this variation.

The above intuition is easily extended to t = 3 (i.e. grade 5), giving four estimated

moments: τ
(U,U,T )
3 , τ

(T,U,T )
3 , τ

(U,T,T )
3 , and τ

(T,T,T )
3 . These estimates are estimated through a

three-dimensional variant of Equation 4.9. In the three-dimensional design, however, stan-

dard errors become very large, making meaningful inference difficult. Therefore, I generally

neglect the period one treatment status and present these estimates as two-dimensional es-

timates, τ
(U,T )
3 , τ

(T,T )
3 . Finally, following Lee and Card (2008), I cluster standard errors for

all RD estimates at the student-by-subgroup level (i.e. by each value of the running variable

for each subgroup).

Alternative Story: It is possible that τ
(T,T )
2 > τ

(U,T )
2 due to dynamic complementar-

ities in the teaching technology, rather than dynamic complementarities in the production

technology (and the associated school responses). This alternative story is that treatment

in the prior period gives teachers additional skills that make investments more productive

in the next period.

I rule out this alternative story by directly testing for the presence of dynamic comple-

mentarities in the teaching technology. The test stems from the fact that dynamic comple-

mentarities in the teaching technology affect every grade, while dynamic complementarities

in the learning technology only affect grades where students can be treated in the prior
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period. Grade 3 students, who cannot receive treatment in the prior period (but whose

teachers taught their treated schoolmates last year), should therefore not exhibit differential

treatment effects by prior year treatment status unless there is a dynamic complementarity

in the teaching technology. Evaluating whether τ
(T,T )
1 > τ

(U,T )
1 therefore provides a test of

the existence of dynamic complementarities in the teaching technology.

4.3 Exploring Model Predictions

I use the regression discontinuity framework to test the two theoretical predictions for

fixed-target schemes from Section 3.

Proposition 1: Without dynamic complementarities, one could test Proposition 1 by es-

timating Equation 4.1 separately for each grade: under Proposition 1, the effect of subgroup-

accountability should be higher in earlier grades. If there are dynamic complementarities,

however, these grade-specific estimates do not capture the effect of accountability-induced

increases to school inputs in each grade. The intuition is that when students are treated for t

periods, the period t RD estimator captures higher levels of period t school inputs and their

dynamic interactions with the higher levels of prior inputs for these students. Therefore,

period-specific RD estimates (except period one) identify a combination of period-specific

input changes and dynamic complementarities.

I test Proposition 1 by checking whether τ
(T )
1 >τ

(U,T )
2 >τ

(U,T )
3 . This test comes from the

fact that the dynamic complementarity term in τ
(U,T )
2 (given by Equation 4.5) is an inter-

action between period one inputs for an ‘untreated’ student and her period two treatment

effect. While period one school inputs for untreated students, S
(U)
1 , are non-zero since the

school foresees that the student may be treated in period two, they are likely to be small

(this holds true in the structural analysis that follows), making the dynamic complementarity

term in τ
(U,T )
2 a small positive value. Therefore, τ

(T )
1 >τ

(U,T )
2 is a necessary (but not sufficient)

condition for Proposition 1 that schools invest more in period one than in period two (i.e.,

S
(T )
1 >S

(U,T )
2 ). A similar argument confirms that τ

(U,T )
2 >τ

(U,T )
3 tests whether schools invest
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more in period two than in period three.

Proposition 2: Proposition 2 establishes that schools target students with ability levels

below the achievement threshold under a fixed-target scheme. I investigate this by first

predicting student ability, αi, with pre-accountability test scores (i.e. test scores in grade 2)

and a full set of demographic controls,29 yielding a predicted ability level, α̂i. I then estimate

the treatment effects for each ability level. I identify these ability-specific estimates, τ
(T )
1 (αi)

and τ
(T,T )
2 (αi), through nonparametric RD regressions that vary by a student’s predicted

ability level. For example, I estimate τ
(T )
1 (αi) with:

yisgt(αi) = γ0 + τ
(T )
1 (αi)Tsgt + θΛ(Xsgt) + φ(Λ(Xsgt)∗Tsgt) + λg + θt + δZisgt + εigst ,

∀gst ∈ [−wsgt, wsgt], ∀i ∈ [αi − κi, αi + κi] , (4.10)

where wsgt is the usual RD bandwidth, κi is the bandwidth with respect to student ability (set

to one standard deviation), and all other variables are defined in Equation 4.1. Regressions

are weighted by ability through a triangular kernel that puts more weight on observations

closer to yisgt(αi). Under Proposition 2, there should be an ‘inverse-U’ shaped distribution

of ability-specific treatment effects that is centered below the achievement threshold.

4.4 Data

I use detailed administrative data from the North Carolina Education Research Cen-

ter (NCERDC). These include information about all public school students and teachers in

North Carolina for the 2002-03 to 2007-08 school years. Given that NCLB was enacted for

the 2002-03 school year, the data cover the first six years of NCLB. They contain test scores

for each student in mathematics and reading for grades two through five from standardized

tests that are administered at the end of each school year in the state.30 Test scores are

29Formally, I regress αi = ψ0 + ψ1yi,g=2 + ψ3Zi + εi, where yi,g=2 is grade 2 test scores and Zi are the
demographic characteristics of student i.

30Grade 2 tests, which are administered at the start of the grade three school year, are the exception. In
addition, grade two math scores for the 2004-05 school year are missing.
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reported on a developmental scale, which is designed such that each additional point rep-

resents the same knowledge gain, regardless of the student’s grade or baseline ability. To

create comparability of test scores across grades, I standardize this scale at the student level

to have a mean of zero and a variance of one for each grade-year. Except for Equation

4.10 (non-parametric identification of accountability by ability), all data are collapsed to

the ‘school-subgroup-belong-year’ level, which is the unit of observation in the econometric

framework (represented by the ‘sbgt’ subscript), where each school-subgroup-year observa-

tion is split into two separate observations: students who belong and students who do not

belong to the subgroup that is being analyzed. As a consequence, these standardized scores

no longer have a standard deviation of one.

I obtain data on school-level subgroup counts and the subgroups that are used for NCLB

purposes by referring to North Carolina’s Adequate Yearly Progress (AYP) reports.31 The

AYP reports include detailed data stating which subgroup-specific targets the school must

meet to pass AYP and whether or not the target was actually achieved. The reports also

record the number of students in each subgroup who are used for NCLB purposes, allowing

me to utilize the understudied forty student subgroup rule for identification. One cannot

do this with the NCERDC data set since it reports only the number of students taking

the end-of-grade test. The NCLB attendance rules described in Section 2 often make the

AYP subgroup counts differ from the number of students belonging to a subgroup who take

the end-of-grade test in a given school. The AYP reports are therefore required to obtain

consistent school-level subgroup counts for NCLB purposes, a pre-requisite for employing a

regression discontinuity design.

The NCERDC data set contains unique student and teacher identifiers, allowing students

and teachers to be linked and tracked over time. Classroom assignment data are inferred

based on the teacher who administers the test at the end of each school year. In elementary

31As part of NCLB, each state must file these reports. North Carolina’s reports are available at http:

//accrpt.ncpublicschools.org/app/2003/ayp/.
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schools, this is almost always the student’s classroom teacher.32 I make two data restrictions.

First, observations are omitted if the NCERDC school-subgroup-belong-year count is less

than twenty-five percent of the count from the AYP data.33 Second, data are restricted to

schools with a highest grade of either 5 or 6 to eliminate K-12 schools, which have especially

long time horizons, making it difficult to identify differential investment across grades.

Summary statistics are reported in Table 1. Column (1) shows student characteristics for

all students in the sample. North Carolina has a white student plurality and a substantial

black minority population (26 percent), with Hispanic and Asian students making up a

further fourteen and seven percent of the student body, respectively. Column (2) restricts the

sample to observations near the forty-student threshold, which looks very similar to column

(1) aside from some minor differences. Columns (3) and (4) report the subsample of students

who belong and do not belong to the subgroup that is near the forty-student threshold,

respectively. There are more substantial differences here, with students belonging to the

subgroup scoring about 0.3σ lower on the end-of-grade standardized tests than students not

belonging to the subgroup. Correspondingly, students belonging to the subgroup are much

more likely to be black, Hispanic or disadvantaged. These differences are an artifact of the

sampling: schools are far more likely to have a minority subgroup close to the forty student

subgroup threshold than a majority subgroup. Appendix Table A3 also reports differences

in test scores across subgroups, showing that black and disadvantaged students perform far

worse on standardized tests than white or Asian students (as found elsewhere).

5 Results

I discuss the validity of the regression discontinuity design introduced in Section 4 and

present the reduced-form results. Then, building on the period-by-period treatment variation

(as described in Section 4.3), I formally test for dynamic complementarities among school

32This is the method of obtaining classroom assignment using NCERDC data that is prevalent in the
literature (for example, see Clotfelter et al. (2006)).

33This restriction eliminates less than one percent of schools in the RD sample.
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inputs and test the theoretical predictions from Section 3. The next section then utilizes

these results in the context of a structural model.

5.1 Validity of the Regression Discontinuity Design

Because schools do not face any subgroup-specific accountability if there are fewer than

forty students in a subgroup, they have an incentive to manipulate the number of students

in subgroups. As schools that manipulate their subgroup numbers may systematically differ

from those that do not, such manipulation may invalidate the RD design.

Relevant to the manipulation concern, Section 2 describes how the number of students in a

given subgroup is calculated. Schools may be able to manipulate the number of students in a

subgroup in a variety of ways: changing a student’s subgroup designation, refusing admission

to a student of a certain subgroup, or preventing a student from reaching 140 days at the

school through suspension or expulsion. For racial subgroup categories, changing a student’s

racial designation seems difficult, but there is some evidence that schools are able to change

a student’s disability designation;34 in light of that, the disability subgroup is omitted from

the analysis that follows.

To check whether schools manipulate the number of students in a subgroup, Figure 2

plots the distribution of the number of students by school-subgroup-year cell. If schools

are manipulating the number of students in a subgroup, we would expect there to be a

large number of schools just to the left of the forty-student threshold, relative to the right.

Visually, there does not appear to be any excess density around the threshold. A formal

test of continuity in the density around the threshold (McCrary, 2008) confirms the visual

analysis: the null hypothesis of continuity at the cutoff is not rejected.35

Another method to determine the validity of the regression discontinuity design is to check

for discontinuities in observable characteristics at the forty-student cutoff. While I control

34See Jacob (2005). There is no evidence of manipulation of the other two non-racial subgroups of limited
English proficient or disadvantaged.

35Similarly, I conduct a McCrary (2008) test for the four largest subgroups, separately. This yields p-
values of 0.92, 0.72, 0.37 and 0.21 for the black, Hispanic, white and disadvantaged subgroups, respectively.
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for observable characteristics, discontinuities in observable characteristics may be suggestive

of changes in unobservables around the cutoff. Figures 3 and 4 graph mean covariates by

the number of students in a subgroup for students belonging to and not belonging to a

subgroup, respectively. These covariates include grade 2 math and reading scores, race,

free lunch status, limited English-proficient status, gifted status and disability status. The

covariates appear smooth around the cutoff. More formally, Appendix Table A1 estimates the

discontinuity in covariates at the threshold. Panel A reports the results for students belonging

to the subgroup, Panel B for students not belonging to the subgroup, and Panel C reports

the difference in these, as the difference-in-discontinuity design (see Equation 4.2) requires no

discontinuities in the differences of unobservables characteristics. As expected, the covariates

do not exhibit a significant discontinuity at the cutoff (in line with expectations), though a

few covariates are significant at the ten percent level (four out of thirty-three). Finally, I

implement a seemingly unrelated regression for each panel to test the null hypothesis that

all covariates are jointly continuous at the threshold. Given the p-values, the null hypothesis

in each panel cannot be rejected.

The validity of the two-dimensional RD design requires no discontinuities in observable

or unobservable characteristics in both dimensions. Appendix Table A2 demonstrates that

there are no observable discontinuities in covariates at the threshold for students in both

periods one and two.36 In addition, to ensure that heterogeneous treatment effects are not

being attributed to dynamic complementarities, Panel D of Appendix Table A2 shows that

covariate levels are similar between period two students who were and who were not treated

in the prior year.

For the regression discontinuity design to be valid, having more than forty students in a

subgroup must cause schools to be held accountable under NCLB for that subgroup. Figure 5

plots whether or not the subgroup-specific accountability target was used for NCLB purposes

by the number of students in that subgroup. As expected, once the forty student threshold

36Appendix Table A2 does this only for students in period two as this time period generates the key
results in this paper. A similar check for students in period three is available upon request.
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is crossed, schools are held accountable for that subgroup’s performance. In fact, adherence

to the rule is perfect, with a one-hundred percent jump in the probability that a school is

held accountable for that subgroup once the threshold is crossed.37

5.2 Results from the RD Design

Figure 6 plots the reduced-form relationship between the number of students in a sub-

group and student achievement both for students who belong and do not belong to the

subgroup. As expected, students belonging to the subgroup see their math scores jump

when the forty student threshold is crossed. This jump is not observed for students who do

not belong to the subgroup. The reduced-form relationship for reading scores is less clear:

a similar large jump is observed both for students belonging and not belonging to the sub-

group. The discontinuity shrinks, however, when additional controls are added, consistent

with the NCLB literature, which finds smaller responses for English test scores.38 The point

estimates above the subfigures correspond to the estimates of τi∈g and τi/∈g in columns (1)

and (3) of Table 2.

Since schools only pass AYP if every subgroup attains its proficiency standard, certain

subgroups, especially the lowest performing subgroup, are more pertinent as to whether a

school passes AYP. Appendix Table A3 shows that, on average, the black and disadvantaged

subgroup are low-performing, while the white subgroup is higher-performing. In light of this

evidence, school responses should be larger for the black or disadvantaged subgroup relative

to the white subgroup. Appendix Figures A1 and A2 plot the reduced-form relationships

between the number of students in the black, disadvantaged and white subgroups – together

representing about seventy percent of the RD sample – and mean standardized test scores

37The jump in probability is not observed for limited English-proficient students. This is likely because
North Carolina does not require newly-designated limited English-proficient students to be tested, implying
that the NCLB student counts are larger than the counts used for the rule. In fact, there is no observable
discontinuity around the forty student threshold for this subgroup and it is therefore not used in this paper.

38For example, Dee and Jacob (2011) conclude that NCLB increases math scores but not English scores.
There could be two reasons for this: either school have difficulties influencing English scores, or math targets
are more binding than English ones. Although both reasons may be operating, there is clear support for the
latter reason in North Carolina: twice as many schools fail AYP in math than in English.
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for math and reading, respectively. As expected, there is a jump in test scores for students

belonging to the black and disadvantaged subgroups once the forty student threshold is

crossed, while no such jump occurs for students who do not belong to the black or disad-

vantaged subgroups. The white subgroup, on the other hand, has no obvious discontinuity

in outcomes once the forty student threshold is crossed.

Table 2 reports the results from Figure 6 in columns (1) and (3) – with controls being

added in columns (2) and (4) – for math and reading, respectively. Column (2) of Panel A

shows that students belonging to an accountable subgroup have significantly higher math

achievement. With controls, the estimated effect of subgroup accountability on students in

that subgroup is 0.053σ, which is significant at the five percent level. Panel B reports the

effect for students not belonging to the subgroup, which is close to zero and not statistically

significant. Taking the difference in these outcomes (Panel C), we conclude that subgroup-

specific accountability increases math achievement for students belonging to the accountable

subgroup by 0.046σ relative to students not belonging to that subgroup, significant at the one

percent level. Panel A of column (4) shows that subgroup-specific accountability increases

reading scores among students belonging to that subgroup by 0.028σ, which is about half the

observed effect on math scores. For students not belonging to the subgroup (Panel B), the

effect of subgroup accountability on reading scores is not statistically significant. Henceforth,

I focus on math scores to leverage their larger effects in the counterfactual analysis. In

addition, I do not consider spillovers in the counterfactual analysis, consistent with the

small and statistically insignificant effects on students not belonging to the subgroup.39

5.3 Dynamic Complementarities and Model Predictions

Suggestive evidence of dynamic complementarities and Proposition 1 is provided by Table

3 which reports RD estimates by grade. While the effect of accountability on subgroup

achievement is large and positive for grades 3 and 4, it is negligible for grade 5, consistent

39Since the estimates indicate that spillovers are positive, the inclusion of spillovers increases the benefit
of any higher performing incentive scheme in the counterfactual analysis.
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with Proposition 1 stating that treatment effects are larger in earlier grades. Dynamic

complementarities and the associated changes to school responses that they induce, however,

imply that this is not a formal test of Proposition 1. In addition, the grade four treatment

effect can only be larger than the grade three treatment effect in the presence of dynamic

complementarities: in their absence Proposition 1 is violated. To formally test for dynamic

complementarities I turn to the two-dimensional RD design described in Equation 4.9.

Table 4 provides estimates of the two dimensional RD design. Recall that τ̂
(T,T )
t and

τ̂
(U,T )
t represent the treatment effect among students that were ‘treated’ and ‘untreated’ in

the prior period, respectively. The average of these estimate should approximately equal

the period-specific estimates in Table 3; although treatment effects for periods one and

two (i.e., grades 3 and 4) are approximately double the period-specific treatment estimates

in Table 3. The increase in the size of the treatment estimates (and their standard errors)

comes from the two-dimensional RD restriction requiring schools to be near the forty student

threshold in both the current and prior period. This implies that a different LATE is

identified here: schools consistently near the forty student threshold period-by-period may

respond differently than schools that are not. Specifically, schools that are not consistently

near the threshold are likely experiencing large changes to their subgroup enrollment: these

schools may respond less to crossing the forty student threshold as in the future they expect to

be always (never) held accountable as their subgroup enrollment is on a upward (downward)

trajectory, consistent with evidence from Subsection 8.1 that schools form expectations over

future treatment.

Testing for Dynamic Complementarities: Since students who were treated in the

prior period received more inputs relative to those who were untreated, τ
(T,T )
t > τ

(U,T )
t

indicates the presence of dynamic complementarities (Proposition 3). I therefore test whether

τ̂
(T,T )
2 > τ̂

(U,T )
2 and τ̂

(T,T )
3 > τ̂

(U,T )
3 .40 In period two, the difference between these estimates

40Recall that I use a two-dimensional rather than a three-dimensional RD design in the three period case
due to a limited sample size: the three-dimensional RD design has only 125 observations. Estimates (s.e.’s) for

the three-dimensional design are: τ̂
(U,U,T )
3 =−0.317 (0.371), τ̂

(T,U,T )
3 =−0.419 (0.437), τ̂

(U,T,T )
3 =0.363 (0.404),

and τ̂
(T,T,T )
3 =0.260 (0.492).
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is 0.189 and is statistically significant at the ten percent level, while in period three the

difference is 0.172 (p-value=0.216). In a combined regression, the dynamic complementarity

term τ̂
(T,T )
2 + τ̂

(T,T )
3 > τ̂

(U,T )
2 + τ̂

(U,T )
3 is significant the five percent level (p-value=0.044),

providing evidence for dynamic complementarities in the learning technology.

Testing for Dynamic Complementarities in the Teaching Technology: Students

that are entering period one (i.e., grade 3) are not subject to the accountability scheme in the

prior year, implying that the school’s prior year treatment status cannot generate dynamic

complementarities in the learning technology. Panel A of Table 4 shows that the difference

between τ̂
(T,T )
1 and τ̂

(U,T )
1 is close to zero (τ̂

(T,T )
1 − τ̂ (U,T )

1 = 0.028 [s.e. 0.119]); the treatment

effect for period one therefore does not depend on prior treatment status. Since these teachers

would have taught a ‘treated’ class the prior year, if the dynamic complementarity existed

through the teaching technology (rather than the learning technology) then we would expect

τ̂
(T,T )
1 >τ̂

(U,T )
1 , just as we saw for periods two and three.

Testing Proposition 1: To test that schools invest more in earlier periods, we look at

the period-specific estimates that contain negligible dynamic complementarity terms, namely

τ
(U,T )
1 , τ

(U,T )
2 , and τ

(U,T )
3 . In line with Proposition 1, the estimates indicate that schools

invest more in earlier periods since τ̂
(U,T )
1 > τ̂

(U,T )
2 > τ̂

(U,T )
3 (recall that this is a necessary

condition for Proposition 1 from Subsection 4.3). While τ̂
(U,T )
1 and τ̂

(U,T )
2 do not differ

significantly, differences are statistically significant between τ̂
(U,T )
1 > τ̂

(U,T )
3 (p-value=0.013)

and τ̂
(U,T )
2 > τ̂

(U,T )
3 (p-value=0.012).

Testing Proposition 2: Figure 7 displays how the treatment effects vary by a student’s

predicted ability. Figures 7(a) and 7(b) report the results from Equation 4.10, which esti-

mates the periods one and two RD estimates, τ̂
(T )
1 (α̂i) and τ̂

(T,T )
2 (α̂i), for various predicted

student ability levels, α̂i, respectively. Consistent with Proposition 2, the figures suggest

that schools target students who are predicted to be below-marginal with respect to NCLB’s

achievement threshold. Furthermore, the fact that the ‘inverted U’ is located similarly in

Figures 7(a) and 7(b) indicate that schools re-invest in the same below-marginal students in
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period two, suggesting that educators utilize dynamic complementarities to maximize period

two student achievement and thus have a sense of the underlying technology.

6 Structural Estimation

The theoretical model in Section 3 explored school responses to a fixed-target scheme

from a dynamic perspective. Now, I turn to estimating the key model parameters, βt−1,t and

ψ
b
, which govern dynamic complementarities and the cost-to-benefit ratio of school inputs,

respectively. To do so, I follow Aizer and Cunha (2012) and assume that the technology in

Equation 3.1 takes the following functional form:

Ait = αi + Sit + Si,t−1 + βt,t−1SitSi,t−1 + εit . (6.1)

Because of power issues, I consider a two-period model (i.e. T = 2) and set grades 3 and

4 to correspond to time periods one and two, respectively.41 The human capital technology

is therefore given by:

Ai1 = αi + S
(K)
i1 + εi1 , (6.2)

and

Ai2 = αi + S
(K)
i1 + S

(K,K)
i2 + β12S

(K)
i1 S

(K,K)
i2 + εi2 , (6.3)

allowing schooling inputs to depend on students’ treatment statuses in periods one and two

with the superscript (K) and (K,K) (with K ∈ {T, U}).

Recall from Section 3 that Γi2 = 1 denotes the case where student i is treated in period two

and Γi2 = 0, the case where student i is untreated in that period, where E[Γi2 = 1] = pi under

rational expectations. Since the uncertainty is realized in period two, schools make period

41Estimation of a three-period model requires estimates of τ
(T,T,T )
3 , τ

(T,U,T )
3 , τ

(U,T,T )
3 and τ

(U,U,T )
3 . These

four reduced-form estimates are found in Section 5.3; however, they are estimated using a small sample since
they condition on treatment statuses two years prior, eliminating a year of data and requiring schools to be
near the threshold for three consecutive years (estimates rely on 125 school-subgroup-year observations). I
therefore lack the precision in the current application to identify a three-period model.
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two input decisions given the realization of Γi2 and their period one decisions. In period one,

schools determine inputs given their expectations over which period two outcome will be

realized. Since the school decides sequentially, the model is solved by backward induction.

Period Two: The school’s problem depends on the treatment realization, Γi2, and

period one inputs. When Γi2 = 1 (i.e., the school is held accountable), the school solves:

max
{S(K,T )

i2 }K∈{T,U}

N∑
i

b
[
H(αi + S

(K)
i1 + S

(K,T )
i2 + β12S

(K)
i1 S

(K,T )
i2 −A∗2)− c(S(K)

i1 , S
(K,T )
i2 )

]
subject to: S

(T,T )
i2 ≥ 0, S

(U,T )
i2 ≥ 0 ∀i . (6.4)

If the student is not held accountable (i.e., Γi2 = 0), then period two inputs are trivially set

to zero, since there are no future benefits to raising school inputs in period two (given it is

a two-period model).

Period One: Given rational expectations, the school’s problem for K ∈ {T, U} is:

max
S
(K)
i1

N∑
i

[
Γi1 ·b·H(αi+S

(K)
i1 −A∗1)+pi ·b·H(αi+S

(K)
i1 +S

(K,T )
i2 +β12S

(K)
i1 S

(K,T )
i2 −A∗2)−c(S(K)

i1 , S
(K,T )
i2 )

]
subject to: S

(K)
i1 ≥ 0 ∀i ,. (6.5)

Taking the first-order conditions (FOCs) from the school problem in Equations 6.4 and 6.5

with respect to school inputs in period one and two yields the implied optimal level of school

inputs implicitly satisfying the following equations:

c′(·)=


b
[
h(αi+S

(T )
i1 −A∗1)+pi ·h(αi+S

(T )
i1 +S

(T,T )
i2 +β12S

(T )
i1 S

(T,T )
i2 −A∗2)·(β12S

(T,T )
i2 )

]
if Γi1 =1

pi ·b·h(αi+S
(U)
i1 +S

(U,T )
i2 +β12S

(U)
i1 S

(U,T )
i2 −A∗2) · (β12S

(U,T )
i2 ) if Γi1 =0 ,

c′(·) =


b
[
h(αi + S

(K)
i1 + S

(K,T )
i2 + β12S

(K)
i1 S

(K,T )
i2 −A∗2) · (β12S

(K)
i1 )

]
if Γi2 =1

0 if Γi2 =0 .

(6.6)

(6.7)

While neither the cost parameter, ψ, nor the benefit parameter, b, is separately identified,
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I can identify the marginal cost-to-benefit ratio, ψ
b
. To solve for the parameters β12 and ψ

b
, I:

(1) parameterize the cost function as follows: c(Si1, Si2) = ψ
2
(S2

i1 +S2
i2), where ψ governs the

slope of the marginal cost curve; (2) proxy initial ability, αi, using predicted test scores, α̂i,

based on grade 2 test scores and a full set of student demographic characteristics; (3) assume

that the distribution of the error term is drawn from a mean-zero normal distribution with a

variance equal to the variance of the test score in each grade, conditional on initial ability;42

and (4) assume that schools form their beliefs based on the empirical probability that the

relevant school subgroup is treated in period two, given their current student population.43

To identify the parameters, I use two reduced-form estimates from Section 5: the effect of

being treated in period one, τ
(T )
1 , and the effect of being treated in period two, conditional on

also being treated in period one, namely τ
(T,T )
2 . It is clear from Equations 6.4 and 6.5 (and

Proposition 2) that school input decisions depend upon student ability. The model thus

requires consistent ability-specific estimates, τ
(T )
1 (αi) and τ

(T,T )
2 (αi), which Equation 4.10

identifies through nonparametric RD regressions that vary by a student’s predicted ability

level.

Consider these treatment effects in terms of period one and two student achievement,

given by Equations 6.2 and 6.3. τ
(T )
1 (αi) compares period one achievement for those who are

held accountable – thus receiving school inputs S
(T )
i1 (αi) – and those who are not held ac-

countable (and therefore receiving the minimum level of school inputs). Similarly, τ
(T,T )
2 (αi)

captures the effect of period two treatment, conditional on receiving treatment in period

one. Thus, these two empirical estimates can be written in terms of the model as follows:

τ
(T )
1 (αi) = S̃

(T )
i1 (αi)

τ
(T,T )
2 (αi) = S̃

(T,T )
i2 (αi) + β12S̃

(T )
i1 (αi)S̃

(T,T )
i2 (αi) ,

(6.8)

(6.9)

42The conditional test score has a variance of approximately 0.85 in each grade.
43A school’s ability to foresee its period two accountability status depends upon the propensity for students

to switch schools and year-to-year variation in subgroup size of the entering cohort. Section 8.1 shows that
schools can use grade-specific enrollment levels to form their beliefs about future treatment. In my setting,
however, there remains substantial year-to-year treatment variation: among treated school-subgroups in my
RD sample, only sixty percent of them are treated in period two.
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where S̃
(T )
it (αi) represent the increased level of school inputs when the school is treated,

relative to untreated, in period t.44 These inputs are an explicit function of student ability.

Using the mapping between the reduced-form estimates and school inputs, I solve for the

structural parameter β12 by taking the ratio of Equations 6.6 and 6.7 and using Equations

6.8 and 6.9 to replace the school inputs, S̃
(T )
i1 (αi) and S̃

(T,T )
i2 (αi), with the empirical estimates

τ̂
(T )
1 (α̂i) and τ̂

(T,T )
2 (α̂i) for each α̂i. I then solve the system of two non-linear equations with

two unknown parameters, β̂12 and ψ̂
b
.

Identification: Since β12 is estimated for each ability level,45 I set the estimated param-

eter β̂12 to the average of the estimated β̂12(α̂i). The parameter β̂12 is implicitly identified

by the ratio of S
(T )
i1 and S

(T,T )
i2 . As S

(T )
i1 approaches S

(T,T )
i2 , the estimated β̂12 becomes larger

since a school input profile where S
(T )
i1 ≈ S

(T,T )
i2 suggests that the school is leveraging the

dynamic complementarity term in the period two achievement equation.46 When the ratio

implies that S
(T )
i1 > S

(T,T )
i2 by a large margin, the estimated β̂12 becomes small since the

school is not leveraging any dynamic complementarities.

Intuitively-speaking, the marginal cost-to-benefit ratio, ψ
b
, identifies the overall level of

school investment since a lower cost (or a higher benefit) causes the school to invest more.

This parameter is required for the counterfactual analysis that follows and is solved for by

substituting β̂12 into either Equation 6.6 or 6.7 – either equation yields an identical estimate.

Section 4.1 raised the concern that the LATE in the RD design – which identifies τ̂
(T )
1 (α̂i)

and τ̂
(T,T )
2 (α̂i) – might understate the true reduced-form effect. If this is the case, then

both structural parameters are underestimated. This arises because when both τ̂
(T )
1 (α̂i) and

44When a school is untreated in period two, the school trivially does not invest any inputs in its students
(see the untreated case in Equation 6.7). I pin down the level of inputs for the untreated case in period one

using τ̂
(U,T )
2 . Since this estimate is slightly negative over the relevant ability range, S

(U)
i1 is approximately

zero in the untreated case.
45Variation in β12 with respect to student ability could be used to identify an interaction between student

ability and school inputs in the production technology. In practice, identification of this interaction is
infeasible due to data requirements, since schools target a relatively narrow ability range under a fixed-
target scheme.

46This follows because the dynamic complementarity term in the production technology is multiplicative,

implying that period two achievement is maximized when S
(T )
i1 = S

(T,T )
i2 . The production technology captures

the idea that “if investments complement each other strongly, optimality implies that they should be equal
in both periods” (Cunha et al., 2010).
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τ̂
(T,T )
2 (α̂i) are underestimated (by an equal proportion), school inputs in period one, S

(T )
i1 , fall

more than school inputs in period two, S
(T,T )
i2 . Since S

(T )
i1 > S

(T,T )
i2 (by Proposition 1), S

(T )
i1

therefore moves closer to S
(T,T )
i2 . From the argument above, this implies that the structural

model predicts a higher level of dynamic complementarity since the period-specific inputs are

closer to being equalized. The parameters are not overly sensitive to this underestimation,

however: if both reduced-form estimates are understated by ten percent, then the structural

parameters increase by five percent.

6.1 Estimated Structural Parameters

Figure 7 shows the ability-specific estimates of τ̂
(T )
1 (α̂i) and τ̂

(T,T )
2 (α̂i) from Equation

4.10. While τ̂
(T )
1 (α̂i) maps directly into accountability-induced changes to period one school

inputs, recall that τ̂
(T,T )
2 (α̂i) captures accountability-induced period two inputs and dynamic

complementarities between S
(T )
1 and S

(T,T )
2 . Therefore, it is unsurprising that τ̂

(T,T )
2 (α̂i) >

τ̂
(T )
1 (α̂i): this suggests that dynamic complementarities are non-negligible.

β̂12 is estimated for each predicted ability, α̂i ∈ [−1.2, 0]. As expected, the parameter is

large and stable over the ability distribution where schools respond.47 Taking an average

over this range yields an estimate of β̂12 = 10.24 (s.e. 3.22). Substituting the estimated

β̂12 into either Equation 6.6 or 6.7 yields ψ̂
b

= 10.10 (s.e. 1.55). Standard errors for these

parameter estimates are bootstrapped.

Interpretating the structural dynamic complementarity parameter (as for any interaction

term) must be placed in context of the distribution of period one and two accountability-

induced changes to school inputs. The estimated dynamic complementarity parameter, β̂12,

indicates that a one standard deviation increase in these period one and two inputs (about

0.08σ in total) leads to a 0.015σ increase in student achievement through dynamic com-

plementarities. To put this into perspective, the dynamic complementarity portion of the

47β̂12 ranges between five and fifteen over the ability range α̂i∈ [−1.2, 0]. When α̂i goes above zero, this

is no longer true as there are no school responses in this region to identify β̂12. This equates to identifying
β12 by dividing a zero by a zero, making β̂12 go towards infinity.
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production technology provides an average achievement increase of 0.04σ under NCLB, and

the parameter ψ
b

identifies the level of school inputs under the NCLB benefit scheme. This

latter parameter allows us to perform counterfactual analysis for alternative accountability

schemes, where the benefits under these schemes are similar to those under NCLB.48

6.2 Robustness

I provide numerous robustness checks for both the reduced-form estimates and structural

parameters from Sections 5 and 6. A bandwidth of five is used throughout this paper. Ap-

pendix Figure A3 tests the sensitivity of the reduced-form estimates, τ̂i∈g, and the estimated

structural parameters, β̂12 and ψ̂
b
, with respect to the bandwidth. Specifically, Appendix

Figure A3 plots the resulting estimate for each bandwidth wsgt ∈ [2, 10], showing that the

estimates do not vary substantially.

Estimates in the paper are generated with a triangular kernel functional form, allowing for

different functions on either side of the cutoff. The relationship between student outcomes

and the number of students in a subgroup around the discontinuity may take a different

functional form, however. Appendix Table A4 reports reduced-form and parameter estimates

for two additional functional forms: linear and quadratic. The different functional forms yield

an effect that is qualitatively and quantitatively similar to estimates using the triangular

kernel functional form.

The underlying assumption of the regression-discontinuity design is that outcomes would

be continuous through the threshold in the absence of the subgroup rule. While indirect

tests of this assumption are provided in Section 5.1, no direct test is available. Nevertheless,

smoothness of outcomes over placebo subgroup rules are indicative of smoothness at the true

threshold in the absence of the subgroup rule. Appendix Figure A4 reports the reduced-form

estimates over a range of placebo subgroup rules. In general, the vast majority of subgroup

48The counterfactual analysis requires that benefits under alternative schemes are anchored to the benefits
of NCLB (which is not a monetary scheme). Despite that, Macartney et al. (2016) monetize NCLB sanctions,
allowing policymakers to anchor benefits to NCLB when constructing alternative schemes.
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rules yield an estimate near zero and thus outcomes appear smooth, except at the actual

subgroup rule of forty students.

7 Counterfactual Analysis

Having estimated the structural parameters, I can now consider the effects of alternative

accountability schemes. First, I place the policy alternatives in the context of the theoretical

model in Section 3. Second, I derive optimal school responses as a function of the structural

parameters using first-order conditions from the theoretical model. Those two components in

hand, the estimated structural parameters and dynamic model allow me to simulate the full

distribution of student achievement under alternative schemes. With this dynamic frame-

work, I highlight various counterfactuals, computing student achievement under no account-

ability scheme, fixed-target schemes with different achievement thresholds, and value-added

schemes, which set student-specific targets based on prior test scores. The counterfactual

framework emphasizes that value-added schemes setting student-specific achievement tar-

gets based on baseline test scores – which I call ‘multiperiod value-added’ schemes – can

both increase achievement and reduce inequality.

7.1 Counterfactual Setup

Since accountability schemes usually encompass all students within a school or region,49

I assume that accountability schemes apply to all students across all time periods in the

counterfactual world, so that pi = 1, ∀i. From Section 3, the school’s optimization problem

thus becomes:

max
{Sit}i∈N

N∑
i

T∑
t

[b ·H(Ait −A∗)− c(Sit)]

subject to: Sit ≥ 0 ∀i, t . (7.1)

49In the structural analysis, treatment expectations were important since treatment effects were identified
among schools where some students would not be held accountable. Even under NCLB, only a small minority
(less than ten percent) of the student population does not face subgroup accountability.
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Moving the Achievement Threshold: If the policymaker wishes to maintain the

fixed-target scheme, she can alter school incentives (and thus the distribution of student

achievement) by setting an achievement target of A∗ + δ, where δ can either be positive

or negative.50 Since the FOCs take a similar form to the NCLB case, school responses are

easily derived using the theoretical model in Section 3. Given an achievement target A∗+ δ,

I can therefore use the estimated parameters β̂12 and ψ̂
b

to calculate school inputs Si1(α̂i) and

Si2(α̂i) ∀i based on Equations 6.6 and 6.7. With the school inputs in hand, I then simulate

the distribution of student achievement under alternative fixed-target schemes, parametrized

by δ.

Value-added Schemes: Value-added schemes, which set student-specific achievement

thresholds, generate a substantial change to school incentives. A value-added scheme specifies

the achievement level threshold of student i, A∗it, based on test scores from a prior period

plus a test score improvement target, ζk. The target is now both student- and year-specific

and is given by: A∗it = Ai,t−k + ζk, where k ≥ 1 and ζk ≥ 0. The parameter k determines

which prior test score the target is based on. The policymaker can set a different test score

improvement target, ζk, based on the type of value-added scheme denoted by the parameter

k.51 I differentiate between a ‘traditional value-added’ scheme, which sets the achievement

threshold based on last year’s test score (i.e. k = 1) and ‘multiperiod value-added’ schemes

where k ≥ 2.52 As in the fixed-target scheme, schools get benefits b based on the proportion

of students who exceed this threshold and they face a convex cost of resources, c(Sit). The

50In the counterfactuals I do not vary the achievement threshold by grade (i.e. A∗1 = A∗2). This is just for
expositional clarity; I can simulate the achievement distribution under grade-specific achievement thresholds.

51Indeed, the policymaker should do so since ζk represents the test score improvement target over k
periods. If the policymaker wants a test score improvement of 0.1 units over two periods, she must set
ζ1 = 0.05 and ζ2 = 0.1 for value-added schemes based on lagged and two year-lagged test scores, respectively.

52In my context, this involves using the test score at the start of accountability (as there is no account-
ability or tests before grade three). This is also the entering test score for many schools.
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school’s optimization problem under a value-added scheme is:

max
{Sit}i∈N

N∑
i

T∑
t

[b ·H(Ait − Ai,t−k − ζk)− c(Sit)]

subject to: Sit ≥ 0 ∀i, t , (7.2)

with first-order conditions for all i across all time periods being given by:

∂Ui
Sit

: b · h[Ait − Ai,t−k − ζk]
∂Ait
∂Sit

+ ...+ b · h[AiT − Ai,T−k − ζk]
(
∂AiT
∂Sit

− ∂Ai,T−k
∂Sit

)
≤ c′(Sit)

...
...

...

∂Ui
SiT

: b · h[AiT − Ai,T−k − ζk]
∂AiT
∂SiT

≤ c′(SiT ) . (7.3)

Before the necessary structure is imposed to estimate counterfactuals with the estimated

structural parameters, the framework generates two insights into value-added schemes. I

present these as theoretical propositions:

Proposition 4 If ability is additively separable, then school inputs are independent of stu-

dent ability.

Proof.: See Appendix A.

The intuition behind Proposition 4 is straightforward: since student achievement in ev-

ery year is a function of ability, making achievement targets based on prior achievement

eliminates student ability from the school problem. If ability is not additively separable,

then school inputs are a function of student ability, but to a lesser extent than under the

fixed-target scheme. In this non-additive case, a positive interaction between ability and

school inputs causes schools to invest more in high-ability relative to low-ability students,

exacerbating test score gaps.

Proposition 5 If the test score improvement target ζk = ζ ∀k, school inputs are increasing

in the number of years (k) that the test score used to determine the student-specific targets

is lagged.
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Proof.: See Appendix A.

I highlight the intuition behind Proposition 5 by comparing a traditional value-added

scheme (k = 1) to a multiperiod value-added scheme (k = 2). For exposition, assume

that there are no dynamic complementarities: under the traditional value-added scheme, an

increase in period one inputs, Si1, raises the likelihood that a student exceeds the threshold

in period one. The marginal benefit of these school inputs is zero in period two, however.

This is because any increase in period two achievement caused by the higher level of period

one inputs is subsumed into the new period two achievement target. Multiperiod value-

added schemes, in contrast, reduce this dynamic disincentive to invest. Period one inputs

in this counterfactual scheme increase the likelihood that a student exceeds the threshold

for periods one and two, as the target takes two periods to adjust to the higher period-one

achievement level.53 Dynamic complementarities in the production function further magnify

the performance of value-added schemes with higher values of k. While the fundamental

intuition for this dynamic disincentive is well-known (see Macartney (2012) for compelling

evidence), the counterfactual framework provides a practical policy solution that eliminates

the disincentive, using a multiperiod value-added scheme that sets student-specific targets

based on baseline test scores.54

To employ the estimated structural parameters from Section 6, I introduce the two-period

structure with a production technology given by Equation 6.1. The school’s problem under

a value-added scheme with parameter k becomes:

max
Si1,Si2

bH(Ai1 − Ai0 − ζk) + bH(Ai2 − Ai,2−k − ζk)− c(Si1)− c(Si2)

subject to: Sit ≥ 0 ∀i, t . (7.4)

53More generally, a value-added scheme with a parameter of k increases a school’s payoff for period t
inputs for t− k − 1 years.

54Macartney (2012) notes that this dynamic disincentive is eliminated when achievement target growth
equals the growth rate of test scores. A policy that sets growth targets equal to test score growth is hard to
implement, however, as the policymaker needs to know student-specific test score growth rates.
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The first-order conditions and the parametrization of the cost function yield a system of two

equations, which depend on the value of k. For k = 1, we have:

ψS∗i1 = bh(S∗i1 − ζ1) + bh(S∗i2 + βS∗i1S
∗
i2 − ζ1) [βS∗i2]

ψS∗i2 = bh(S∗i2 + βS∗i1S
∗
i2 − ζ1) [1 + βS∗i1] ,

(7.5)

(7.6)

while for k = 2, the equations are:

ψS∗i1 = bh(S∗i1 − ζ2) + bh(S∗i1 + S∗i2 + βS∗i1S
∗
i2 − ζ2) [1 + βS∗i2]

ψS∗i2 = bh(S∗i1 + S∗i2 + βS∗i1S
∗
i2 − ζ2) [1 + βS∗i1] .

(7.7)

(7.8)

From Proposition 4, we know that school inputs are independent of student ability under

this production technology. Given a value-added target, ζk, and our parameter estimates,

β̂12 and ψ̂
b
, Equations 7.5 and 7.6 (Equations 7.7 and 7.8) allow S∗i1 and S∗i2 ∀i to be solved

for under the value-added scheme where k = 1 (k = 2).

Under a value-added scheme, the test score improvement target, ζk, is set by the pol-

icymaker. A very high or very low test score improvement target reduces incentives for

schools to expend resources, since the target is either too easy or too hard to attain. For the

counterfactual analysis, the target, ζk, is assumed to be set optimally by the policymaker to

maximize student achievement. In this case, setting ζ1 = 0.100 and ζ2 = 0.265 maximizes

student achievement for the value-added scheme of type k∈{1, 2}, respectively.55

7.2 Results

The NCLB achievement level threshold in North Carolina is set at about the sixteenth

percentile of the achievement distribution. Figure 8 shows the effect of moving the achieve-

55Since a unique optimal ζk exists for each set of structural parameters, I numerically solve for the optimal
ζk. Intuitively, this parameter roughly maximizes the marginal benefit of investment by equating total school
inputs over time period k to ζk

k , making the average probability that each student exceeds the achievement
target over the k periods approximately h(0), maximizing the pdf h(·).
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ment threshold in terms of both average student achievement and the black-white test score

gap. Average achievement increases as the fixed-target threshold is raised, reaching a max-

imum near the median of the achievement distribution (where δ = 0.9). Beyond that,

increases in the achievement threshold cause a decline in average achievement.

Looking at a common measure of inequality, the black-white test score gap, yields a

very different picture. Initially, the achievement target is very low and so schools do not

respond to it, making the black-white test gap identical to the ‘no accountability’ case. As the

achievement target rises, the test gap falls to a minimum near NCLB’s achievement threshold

(minimized at δ=−0.1). Then, as the achievement threshold continues to increase, schools

shift their targeting to higher ability students, who are more likely to be white, increasing the

test score gap. Finally, once the achievement target becomes too high, the policy becomes

ineffectual and the test score gap returns back to the gap without accountability.56 Therefore,

a policymaker who cares about both average achievement and inequality should set the

achievement threshold of a fixed target scheme within the region defined by δ∈ [−0.1, 0.9].

The horizontal lines in Subfigures 8(a) and 8(b) represent average achievement and the

black-white test score gap under traditional and multiperiod value-added schemes. For av-

erage achievement, we see that a multiperiod value-added scheme vastly outperforms the

traditional value-added scheme by about 0.18σ, highlighting the dynamic disincentives in-

herent in traditional value-added schemes. Dynamic disincentives cause certain fixed-target

schemes to outperform a traditional value-added scheme. Since both types of value-added

scheme (represented by the horizontal line in Figure 8(b)) fare worse than the fixed-target

scheme in terms of student inequality, this suggests that traditional value-added schemes can

lead to lower student achievement and higher inequality relative to fixed-target schemes.

Comparing fixed-target schemes to multiperiod value-added schemes, however, highlights

an efficiency-equity trade-off: for example, replacing NCLB with a multiperiod VA scheme

56The figures (not shown) for the variance of the achievement distribution and the counterfactual SES
test score gap (defined by the achievement difference between SES and non-SES students) are near-identical
to that of the black-white test gap figure.
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would increase average test scores by 0.25σ, but would also lead to a twenty percent increase

(or 0.13σ) in the black-white test score gap.

Dynamic complementarities generate much of the improvement in these accountability

schemes. Suppose that there is no dynamic complementarity in skill accumulation: overall

inputs decline due to a decrease in the marginal benefit of investment and inputs become

more concentrated in period one, since educators stop equating inputs over time in order to

leverage dynamic complementarities. Without dynamic complementarities, average achieve-

ment is 0.782σ, 0.790σ and 0.830σ under NCLB, traditional value-added and multiperiod

value-added schemes, respectively. If dynamic complementarities exist, but educators do

not account for them in their input decisions, then average achievement is 0.803σ, 0.812σ

and 0.870σ for NCLB, traditional value-added and multiperiod value-added schemes, respec-

tively. Therefore, the key gain that dynamic complementarities provide under an incentive

scheme consists in the fact that they raise the marginal benefit of investment, sharpening

the incentives. Relative to a ‘no accountability’ world, dynamic complementarities account

for about 54, 64, and 70 percent of the improvement in average achievement under NCLB,

traditional value-added and multiperiod value-added schemes, respectively.

Value-added schemes that close achievement gaps: Finally, given the much higher

average performance of multiperiod value-added schemes, I consider a variant of the multi-

period value-added scheme that makes the benefits of having a student exceed the threshold

subgroup-specific. I focus on the black-white test gap in this example, though other test gaps

can be considered: in general, this is equivalent to putting more weight on the performance

of students from certain subgroups.57

I propose a scheme that sets benefits for black students and for all other students at

1.075 and 0.967 times NCLB’s per student benefit, respectively. The test score improve-

ment targets that maximize student performance under these benefits are 0.389 for black

students and 0.312 for all other students. Costs under this multiperiod value-added scheme

57Alternatively, a policymaker can weight low-ability students more than high-ability students to achieve
a similar effect.
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are the same as under the previous multiperiod value-added scheme.58 Considering this

multiperiod value-added scheme, the black-white test score gap is identical to the gap under

NCLB, while average student achievement increases by 0.24σ. The reason that multiperiod

value-added schemes can reduce test score gaps while maintaining a similar level of average

student achievement is that while costs are convex, the benefits of investment under dynamic

complementarities are also convex.59

Table 5 summarizes these key statistics from the counterfactual distributions of achieve-

ment under various fixed-target and value-added schemes, as well as from a ‘no accountabil-

ity’ world. Column (1) shows the average achievement of students, while Columns (2)-(4)

show various measures of inequality, including test score gaps. While any accountability

scheme increases student achievement, multiperiod value-added schemes deliver the highest

level of student achievement, and can be carefully constructed to reduce inequality.

8 Discussion

Subsection 8.1 checks the validity of the structural model assumptions in Section 6, while

Subsection 8.2 provides evidence that teacher effort is generating the improvement in student

achievement under accountability.

8.1 Validity of Structural Assumptions

School knowledge of the technology: A key assumption in the structural estimation

is that schools know the underlying production technology. While this assumption is not

directly testable, I provide evidence that schools respond to the dynamic nature of the

learning technology. To do so, I show that schools invest more inputs in students that are

58Costs are determined by the number of students that exceed the threshold under the accountability
scheme.

59The global convexity arises from the multiplicative form that the dynamic complementarities take in
the production technology. In practice, the convexity in the production technology is a local convexity as
there is a biological upper limit to knowledge.
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expected to be held accountable in future periods, revealing that schools internalize the

cumulative nature of the learning technology – whereby investments today produce future

benefits. This is a direct test of Proposition 1’s corollary in Section 3.

I test for this behavior by checking if reduced-form estimates depend on grade-specific

subgroup sizes. The intuition underlying this test is that schools should form expectations

based on subgroup cohort size: a large period one cohort in a given subgroup increases the

likelihood that the subgroup will be held accountable for the next two time periods. I there-

fore run grade-specific regressions that vary non-parametrically with the size of the grade

three cohort, relative to the grade four and five cohorts.60 The grade-specific regressions

identify grade-specific school responses to changes in their expectations: schools should only

increase inputs among students that will remain in the school (i.e. grades 3 and 4).

Appendix Figure A5 shows the relationship between grade-specific RD estimates and

the relative size of a school’s grade 3 cohort. Subfigures A5(a) and A5(b) show that, as

the grade 3 subgroup cohort gets larger, the reduced-form estimates for periods one and

two (i.e. grades 3 and 4) increase. As expected, there is no such relationship in period

three (represented by Subfigure A5(c)), since these students will leave the school next year.

Overall, these subfigures demonstrate that schools know and respond to the cumulative

learning technology.

Expectations: In Section 6, parameters are identified structurally under the assumption

that expectations are formed based on the empirical probability of treatment in the next

period, given their enrollment. If schools have information unknown to the econometrician

that affects the likelihood of future treatment, then the school will form a different expecta-

tion than what is assumed in the structural model. I therefore show robustness to different

school expectations.

Since the structural parameters are identified off treated schools in period one, I focus on

60Specifically, I run a variant of Equation 4.10 where ability is replaced with a grade 3 cohort size measure.
For this measure, I use the total number of grade 3 students who belong to a subgroup divided by the total
number of students belonging to that subgroup in grades 3, 4, and 5.
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these schools. Under rational expectations, E[Γit = 1] = 0.60 for these schools.61 Appendix

Figure A6 reports the estimated structural parameters and their associated confidence inter-

vals for E[Γit=1]∈ [0.5, 1]. Overall, the figures indicate that different treatment expectations

affect the structural parameters in Section 6, though not substantially: if schools predict that

they will always be treated in the next period, for instance, then the structural parameters

are about forty percent higher.62 Further, this overestimation does not substantially alter

the counterfactual results in Section 7: applying structural estimates from the the case where

E[Γit=1]=1 yields an average achievement of 0.83σ, 0.87σ, and 1.00σ under NCLB, value-

added and multiperiod value-added schemes, respectively. The respective black-white test

score gaps are 0.61σ, 0.70σ and 0.70σ.

8.2 Identifying Mechanisms

While educators have many tools at their disposal for improving student achievement, this

subsection provides evidence that teachers increase their effort in response to accountability

pressure. To do so, I show that teacher effectiveness is related to the proportion of students in

the accountable subgroup within the teacher’s class, independently of teacher effectiveness in

prior years. I also find little evidence of within-class spillovers across students, supporting the

modelling assumption that inputs are student-specific. Finally, I rule out several alternative

methods that schools may use to increase student achievement.

The methodology – which I develop formally in Appendix Section B – builds upon Macart-

ney et al. (2016) and relates teacher effectiveness (measured by value-added) to the propor-

tion of accountable students in her classroom. The idea is that if teacher effort drives the

subgroup accountability effect, then teacher effort should increase with the number of ac-

countable students in the class. Keeping with the spirit of the RD design, I only investigate

61Expectations are above fifty percent since schools with slightly more than forty students are more likely
than not to receive treatment in the following year. A school’s ability to foresee its period two accountability
status depends upon the propensity for students to switch schools and year-to-year variation in subgroup
size of the entering cohort.

62When E[Γit=1]=1, the estimated β̂12 and ψ̂
b are 14.52 (s.e. 3.50) and 14.51 (s.e. 2.18), respectively.
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teachers in schools with around forty students in the accountable subgroup. To account for

any systematic sorting of accountable students to teachers (which I explicitly test for below),

teacher ability and baseline effort levels (measured by teacher value-added in other years)

are controlled for implicitly.

Appendix Figure A7 shows the relationship between teacher effectiveness and the propor-

tion of students in the relevant subgroup for schools that lie just to the left of the discontinuity

(not facing subgroup-specific accountability) and those just to the right of the discontinuity

(facing subgroup-specific accountability). As expected, there is no relationship to the left,

but a strong and statistically significant relationship to the right of the discontinuity. These

results indicate that, even once ability is controlled for, teachers who have more students

from the accountable subgroup in their class are more effective. Furthermore, this rela-

tionship only exists for teachers in school-years where these students are held accountable,

indicating that teachers increase effort as more accountable students enter their class.63

Next, to investigate whether teacher effort is student- or class-specific, I search for within-

class spillovers across subgroups. These types of spillover would indicate that teachers can-

not specifically target their increased effort towards accountable students,64 violating the

modelling assumption that school inputs are student-specific. To explore such spillovers, I

investigate the relationship between the proportion of accountable students in a class and

the achievement of non-accountable students. If these non-accountable students receive a

test score boost when the proportion of accountable students (and teacher effort) rises, then

a classroom-level model of effort is more appropriate. Appendix Table A5 reports the rela-

tionship between the number of accountable students in a class and test scores for students

belonging versus not belonging to the accountable subgroup.65 Column (1) shows that there

is no relationship between the proportion of accountable students in a class and the achieve-

63While this method rules out sorting as a possible mechanism, there remain some plausible alternative
mechanisms that may generate this relationship. For example, such a relationship could appear if principals
hire tutors for each accountable student.

64Alternatively, it could imply large within-class peer effects.
65A strong positive (negative) relationship for students belonging to the subgroup is indicative of either

increasing (decreasing) returns to scale in student-specific effort or within subgroup peer effects.
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ment of non-accountable students for schools with either more or less than forty students.

This lends support to a student-specific model of teacher effort.

Alternative Mechanisms: Two alternative mechanisms that could lead to subgroup-

specific improvements in test scores that are unrelated to teacher effort involve student

sorting and resource targeting, respectively. I test for student sorting – where accountable

students are assigned to classrooms with higher-achieving peers or better teachers – by using

the regression discontinuity design from Section 4 and replacing test scores with measures

of teacher and peer quality. I measure peer quality using classmate achievement levels from

the prior year to avoid the reflection problem (Manski, 1993). For teacher quality, leave-

out teacher value-added estimates are computed using the methodology described in Chetty

et al. (2014a). I search for evidence of resource targeting by checking for class size changes

around the discontinuity.

Appendix Figure A8 shows a visual representation of the reduced-form results. It is

clear that there are no jumps in peer quality, teacher quality, or class size for students

belonging or not belonging to the accountable subgroup once the forty student threshold is

crossed. Therefore, there is no evidence of student sorting or resource targeting in response

to subgroup-specific accountability.

9 Conclusion

In this paper, I have developed a new methodology for cleanly identifying dynamic in-

teractions among school inputs for the first time. The methodology adapts a regression

discontinuity design to incorporate year-to-year treatment variation, providing the effective

period-by-period randomization necessary to identify these dynamic complementarities. I

apply the methodology to an education context, where a dynamic perspective is natural

given the cumulative nature of the underlying education process. Using a rule that certain

students are held accountable only if their subgroup has forty students or more at the school
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level, I find that dynamic complementarities are important and that schools take the un-

derlying skill accumulation technology into account when making their period-specific input

choices.

The results shed new light on incentive design in education by emphasizing the role of

dynamic complementarities. Following “A Nation at Risk” (United States National Commis-

sion on Excellence in Education, 1983), a damning report that brought to light the parlous

state of public education in the US, policymakers have made extensive use of incentive

schemes. Without an adequate understanding of the production function for educational

achievement, however, policymakers cannot predict the full dynamic impact of alternative

accountability schemes in a reliable way. By identifying the underlying dynamic technol-

ogy, I am able to build a framework that provides policymakers with the full distribution of

student achievement under alternative schemes that have yet to be implemented. In partic-

ular, I propose a feasible incentive scheme that both raises student achievement and reduces

inequality.

In other education settings, the ability to identify dynamic complementarities opens up

a host of policy design and evaluation issues that should lead to more effective interventions.

Dynamic complementarities imply that policymakers should implement interventions that

affect children over multiple periods, rather than focusing on a narrow developmental stage.

Similarly, education reforms should, ideally, be evaluated over long time horizons (rather

than a simple before and after comparison) to allow these dynamic complementarities to

be leveraged by educators. Furthermore, programs targeting a narrow developmental stage

should be evaluated differently among those receiving relatively high versus low inputs in

future periods so that policymakers can better target future interventions, as in the analysis

of Head Start by Currie and Thomas (2000).

Since dynamic complementarities exist in other settings, the broader significance of the

research is not limited to education. For example, in related work, I am exploring the

implications of dynamic complementarities in terms of whether an incentive scheme should be
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implemented at the group or individual level. Under dynamic complementarities, individuals

must match their inputs across time, which increases the importance of coordination across

individuals, thus favouring group-level incentives that encourage coordination.

54



References

Ahn, Thomas and Jacob Vigdor (2014), “The impact of No Child Left Behind’s ac-

countability sanctions on school performance: Regression discontinuity evidence from

North Carolina.” Working Paper 20511, National Bureau of Economic Research, URL

http://www.nber.org/papers/w20511.

Aizer, Anna and Flávio Cunha (2012), “The production of human capital: Endowments,

investments and fertility.” Working Paper 18429, National Bureau of Economic Research,

URL http://www.nber.org/papers/w18429.

Almond, Douglas and Bhashkar Mazumder (2013), “Fetal origins and parental responses.”

Annual Review of Economics, 5, 36–56.

Carrell, Scott, Richard L. Fullerton, and James West (2009), “Does your cohort matter?

Measuring peer effects in college achievement.” Journal of Labor Economics, 27, 439–464.

Chetty, Raj, John N. Friedman, and Jonah E. Rockoff (2014a), “Measuring the impacts of

teachers I: Evaluating bias in teacher value-added estimates.” American Economic Review,

104, 2593–2632.

Chetty, Raj, John N. Friedman, and Jonah E. Rockoff (2014b), “Measuring the impacts of

teachers II: Teacher value-added and student outcomes in adulthood.” American Economic

Review, 104, 2633–2679.

Chetty, Raj, Nathaniel Hendren, and Lawrence F. Katz (2016), “The effects of exposure

to better neighborhoods on children: New evidence from the Moving to Opportunity

experiment.” American Economic Review, 106, 855–902.

Clotfelter, Charles T., Helen F. Ladd, and Jacob L. Vigdor (2006), “Teacher-student match-

ing and the assessment of teacher effectiveness.” Journal of Human Resources, 41, 778–

820.

55



Cunha, Flávio and James Heckman (2007), “The technology of skill formation.” American

Economic Review, 97, 31–47.

Cunha, Flávio and James J. Heckman (2008), “Formulating, identifying and estimating the

technology of cognitive and noncognitive skill formation.” Journal of Human Resources,

43, 738–782.

Cunha, Flávio, James J. Heckman, and Susanne M. Schennach (2010), “Estimating the

technology of cognitive and noncognitive skill formation.” Econometrica, 78, 883–931.

Currie, Janet and Duncan Thomas (2000), “School quality and the longer-term effects of

Head Start.” Journal of Human Resources, 35, 755–74.

Dee, Thomas S. and Brian Jacob (2011), “The impact of No Child Left Behind on student

achievement.” Journal of Policy Analysis and Management, 30, 418–446.

Dell, Melissa (2010), “The persistent effects of Peru’s mining mita.” Econometrica, 78, 1863–

1903.

Deming, David J., Sarah Cohodes, Jennifer Jennings, and Christopher Jencks (2016), “School

accountability, postsecondary attainment and earnings.” Review of Economics and Statis-

tics, 98, 848–862.

Ding, Weili and Steven F. Lehrer (2010), “Estimating treatment effects from contaminated

multiperiod education experiments: The dynamic impacts of class size reductions.” Review

of Economics and Statistics, 92, 31–42.

Farber, Matthew S. (2016), Essays on the Economics of Education of Underserved Popula-

tions. Ph.D. thesis, University of Texas at Austin.

Figlio, David and Susanna Loeb (2011), “School accountability.” In Handbook of the Eco-

nomics of Education (Eric A. Hanushek, Stephen Machin, and Ludger Woessmann, eds.),

volume 3, 383 – 421, Elsevier.

56



Figlio, David N. (2006), “Testing, crime and punishment.” Journal of Public Economics, 90,

837–851.

Figlio, David N. and Joshua Winicki (2005), “Food for thought: The effects of school ac-

countability plans on school nutrition.” Journal of Public Economics, 89, 381–394.

Gaddis, S. Michael and Douglas Lee Lauen (2014), “School accountability and the black–

white test score gap.” Social Science Research, 44, 15–31.

Grembi, Veronica, Tommaso Nannicini, and Ugo Troiano (2016), “Do fiscal rules matter?”

American Economic Journal: Applied Economics, 8, 1–30.

Heckman, James, Seong Hyeok Moon, Rodrigo Pinto, Peter Savelyev, and Adam Yavitz

(2010), “Analyzing social experiments as implemented: A reexamination of the evidence

from the HighScope Perry Preschool Program.” Quantitative Economics, 1, 1–46.

Jacob, Brian A. (2005), “Accountability, incentives and behavior: The impact of high-stakes

testing in the Chicago Public Schools.” Journal of Public Economics, 89, 761–796.

Kane, Thomas J., Daniel F. McCaffrey, Trey Miller, and Douglas O. Staiger (2013), “Have

we identified effective teachers? Validating measures of effective teaching using random

assignment.” Technical report, Bill & Melinda Gates Foundation, Seattle, WA.

Koretz, Daniel M. (2008), Measuring Up: What Educational Testing Really Tells Us. Harvard

University Press, Cambridge, MA.

Krieg, John M. (2008), “Are students left behind? The distributional effects of the No Child

Left Behind Act.” Education Finance and Policy, 3, 250–281.

Krieg, John M. (2011), “Which students are left behind? The racial impacts of the No Child

Left Behind Act.” Economics of Education Review, 30, 654–664.

Krueger, Alan B. (1998), “Reassessing the view that American schools are broken.” Economic

Policy Review, 4, 29–43.

57



Krueger, Alan B. (2003), “Economic considerations and class size.” Economic Journal, 113,

F34–F63.

Lauen, Douglas Lee and S. Michael Gaddis (2012), “Shining a light or fumbling in the

dark? The effects of NCLB’s subgroup-specific accountability on student achievement.”

Educational Evaluation and Policy Analysis, 34, 185–208.

Lee, David S. and David Card (2008), “Regression discontinuity inference with specification

error.” Journal of Econometrics, 142, 655–674.

Lee, David S. and Thomas Lemieux (2010), “Regression discontinuity designs in economics.”

Journal of Economic Literature, 48, 281–355.

Lubotsky, Darren and Robert Kaestner (2016), “Do ‘skills beget skills’? Evidence on the

effect of kindergarten entrance age on the evolution of cognitive and non-cognitive skill

gaps in childhood.” Economics of Education Review, 53, 194 – 206.

Macartney, Hugh (2012), The Dynamic Effects of Educational Accountability. Ph.D. thesis,

University of Toronto.

Macartney, Hugh, Robert McMillan, and Uros Petronijevic (2015), “Incentive design in

education: An empirical analysis.” Working Paper 21835, National Bureau of Economic

Research, URL http://www.nber.org/papers/w21835.

Macartney, Hugh, Robert McMillan, and Uros Petronijevic (2016), “A unifying framework

for education policy analysis.”, URL http://homes.chass.utoronto.ca/~mcmillan/

MMP3_6nov16a.pdf.

Malamud, Ofer, Cristian Pop-Eleches, and Miguel Urquiola (2016), “Interactions between

family and school environments: Evidence on dynamic complementarities?” Working Pa-

per 22112, National Bureau of Economic Research, URL http://www.nber.org/papers/

w22112.

58



Manski, Charles F. (1993), “Identification of endogenous social effects: The reflection prob-

lem.” Review of Economic Studies, 60, 531–542.

McCrary, Justin (2008), “Manipulation of the running variable in the regression discontinuity

design: A density test.” Journal of Econometrics, 142, 698–714.

Neal, Derek and Diane Whitmore Schanzenbach (2010), “Left behind by design: Proficiency

counts and test-based accountability.” Review of Economics and Statistics, 92, 263–283.

No Child Left Behind Act of 2001 (2002), “Pub. L. 107-110. 115 Stat.1440. 8 Jan 2002.”

URL http://www2.ed.gov/policy/elsec/leg/esea02/107-110.pdf.

Papay, John P., Richard J. Murnane, and John B. Willett (2014), “High-school exit exam-

inations and the schooling decisions of teenagers: Evidence from regression-discontinuity

approaches.” Journal of Research on Educational Effectiveness, 7, 1–27.

Porter, Kristin E., Sean F. Reardon, Fatih Unlu, Howard S. Bloom, and Joseph R. Cimpian

(2017), “Estimating causal effects of education interventions using a two-rating regression

discontinuity design: Lessons from a simulation study and an application.” Journal of

Research on Educational Effectiveness, 10, 138–167.

Reback, Randall (2008), “Teaching to the rating: School accountability and the distribution

of student achievement.” Journal of Public Economics, 92, 1394–1415.

Rockoff, Jonah E. (2004), “The impact of individual teachers on student achievement: Evi-

dence from panel data.” American Economic Review, 94, 247–252.

Sacerdote, Bruce (2001), “Peer effects with random assignment: Results for Dartmouth

roommates.” Quarterly Journal of Economics, 116, 681–704.

Sims, David P. (2013), “Can failure succeed? Using racial subgroup rules to analyze the

effect of school accountability failure on student performance.” Economics of Education

Review, 32, 262–274.

59



Spellings, Margaret (2005), “No Child Left Behind: A road map to state implementation.”

Technical report, US Department of Education, URL http://www.ed.gov/admins/lead/

account/roadmap/roadmap.pdf.

Springer, Matthew G. (2008), “The influence of an NCLB accountability plan on the distri-

bution of student test score gains.” Economics of Education Review, 27, 556–563.

Stullich, Stephanie, Elizabeth Eisner, Joseph McCrary, and Collette Roney (2006), “National

assessment of Title I: Interim report, Vol. I: Implementation of Title I.” Technical report,

Washington, DC: U.S. Department of Education, Institute of Education Sciences.

Todd, Petra E. and Kenneth I. Wolpin (2003), “On the specification and estimation of the

production function for cognitive achievement.” Economic Journal, 113, F3–F33.

Todd, Petra E. and Kenneth I. Wolpin (2007), “The production of cognitive achievement in

children: Home, school, and racial test score gaps.” Journal of Human capital, 1, 91–136.

United States National Commission on Excellence in Education (1983), A nation at risk:

The Imperative for Educational Reform: A Report to the Nation and the Secretary of

Education, United States Department of Education. Washington, D.C.: The Commission:

[Supt. of Docs., U.S. G.P.O. distributor].

Zimmerman, David J. (2003), “Peer effects in academic outcomes: Evidence from a natural

experiment.” Review of Economics and Statistics, 85, 9–23.

60



Figure 2: Density of the Running Variable
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Notes: Figure 2 is based on 3,356 observations. The vertical line indicates the forty-student threshold. The
p-value from the McCrary (2008) test is computed using a bandwidth of 5 and a bin width of 1.
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Figure 3: Covariates (Students belong to Subgroup)
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(i) Student is an English
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Notes: All figures are based on 1,655 observations. Figures and RD estimates control for subgroup fixed-
effects. Each RD estimate comes from a separate local linear regression allowing for different functions on
either side of the threshold. The bandwidth used is five. RD point estimates correspond to those in Panel
A of Appendix Table A1. Dashed lines represent 90% confidence intervals with standard errors clustered on
sixty student-by-subgroup clusters, following Lee and Card (2008). ***,** and * denote significance at the
1%, 5% and 10% levels, respectively.
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Figure 4: Covariates (Students do not belong to Subgroup)
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Learner
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Notes: All figures are based on 1,655 observations. Figures and RD estimates control for subgroup fixed-
effects. Each RD estimate comes from a separate local linear regression allowing for different functions on
either side of the threshold. The bandwidth used is five. RD point estimates correspond to those in Panel
B of Appendix Table A1. Dashed lines represent 90% confidence intervals with standard errors clustered on
sixty student-by-subgroup clusters, following Lee and Card (2008). ***,** and * denote significance at the
1%, 5% and 10% levels, respectively.
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Figure 5: First Stage (Faced Subgroup Accountability Pressure)
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Notes: Figure 5 is based on 1,655 observations. The x-axis represents the number of students taking the
end-of-grade test and who are held accountable under NCLB (see Section 2 for details). The RD estimate
has no standard errors as the line is perfectly fitted. Significance levels: *** 1 percent.
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Figure 6: Reduced-Form Relationship between Test Scores and Number of Students in a
Subgroup
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(b) Students do not belong to Subgroup
RD Estimate: 0.037 (0.027)

0.
05

0.
10

0.
15

0.
20

0.
25

M
at

h 
S

co
re

 -
 S

tu
de

nt
 d

oe
s 

no
t b

el
on

g 
to

 S
ub

gr
ou

p 
(s

)

35 36 37 38 39 40 41 42 43 44 45
Number of Students in Subgroup

Reading Scores

(c) Students belong to Subgroup
RD Estimate: 0.055** (0.025)

-0
.5

0
-0

.4
5

-0
.4

0
-0

.3
5

R
ea

di
ng

 S
co

re
 -

 S
tu

de
nt

 b
el

on
gs

 to
 S

ub
gr

ou
p 

(s
)

35 36 37 38 39 40 41 42 43 44 45
Number of Students in Subgroup
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RD Estimate: 0.051** (0.024)
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Notes: Figures are based on 1,655 observations. Figures and RD estimates control for subgroup and year
fixed effects since the large differences in average test scores across subgroups (see Appendix Table A3) lead
to high standard errors without their inclusion. Each RD estimate is from a separate local linear regression
allowing for different functions on either side of the threshold. The bandwidth used is five. Dashed lines
represent 90% confidence intervals with standard errors clustered on sixty student-by-subgroup clusters,
following Lee and Card (2008). ***,** and * denote significance at the 1%, 5% and 10% levels, respectively.
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Figure 7: Estimated Treatment Effects by Predicted Ability (α̂i)
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Notes: The figures plot τ̂
(T )
1 (α̂i) and τ̂

(T,T )
2 (α̂i) for various predicted ability levels, α̂i. These estimates are

used in the structural estimation in Section 6. Student ability is predicted using grade 2 test scores and a
full set of demographic characteristics include gender, ethnicity, gifted status, English learner status, and
free lunch status. The vertical line denotes estimates for students with predicted ability at the achievement
threshold (A∗). Dashed lines represent 90% confidence intervals with standard errors clustered on sixty
student-by-subgroup clusters, following Lee and Card (2008).
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Figure 8: Counterfactuals: Moving the Achievement Threshold
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Notes: Figure 8(a) plots the average achievement level and Figure 8(b), the black-white test score gap
for various achievement thresholds. The horizontal lines represent the average achievement level or black-
white test score gap under alternative value-added schemes for reference. The vertical line represents the
current achievement threshold under NCLB. Table 5 displays the average achievement and various inequality
measures for fixed-target schemes with the NCLB achievement target (δ = 0) and the achievement target
that maximizes average achievement (δ = 0.9).
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Table 1: Summary Statistics

Full RD RD Sample: Students RD Sample: Students
Sample1 Sample (+/– 5)2 in Subgroup3 not in Subgroup3

(1) (2) (3) (4)

Mean (S.D.) of Student Characteristics

Math Score (σ) -0.036 -0.025 -0.188 0.137
(Student-level s.d.) (0.492) (0.453) (0.392) (0.452)

Reading Score (σ) -0.054 -0.053 -0.222 0.117
(Student-level s.d.) (0.467) (0.428) (0.362) (0.421)

% White 37.1 42.7 25.1 60.4
(39.5) (40.6) (39.6) (33.3)

% Black 25.7 31.0 39.9 22.1
(34.1) (39.3) (46.0) (28.6)

% Hispanic 14.2 17.1 25.9 8.4
(28.0) (32.3) (41.9) (13.3)

% Asian 7.4 3.7 4.8 2.7
(23.4) (14.8) (20.4) (4.4)

% Free or Reduced 54.7 56.9 74.4 39.4
Price Lunch (33.3) (32.7) (24.4) (30.5)

% Labeled 11.2 11.1 7.4 14.7
as Gifted (13.8) (12.0) (10.2) (12.5)

% of Students 6.0 6.6 7.4 5.9
with Disability (7.9) (5.1) (6.0) (3.8)

% English 11.7 13.4 20.1 6.8
Learners (21.4) (23.9) (30.9) (9.8)

Observations 84,151 3,310 1,655 1,655
(school-subgroup-belong-year)4

1 The full sample consists of all schools whose highest grade is either 5 or 6 and who have at least twenty-five percent of students in
the accountable subgroup take the test (less than one percent of sample).

2 The RD sample is restricted to schools with a subgroup that is +/- 5 students away from the forty student threshold.
3 ‘Students in subgroup’ are students who belong to the subgroup that is near the forty student threshold, while ‘students not in

subgroup’ are students in the same school but who do belong to the subgroup that is near the forty student threshold.
4 For each subgroup-school-year combination, there are two separate observations: students who belong and students who do not

belong to the subgroup that is being analyzed.
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Table 2: Regression-Discontinuity Estimates of Subgroup-Specific
Accountability on Student Achievement

Math Scores (σ) Reading Scores (σ)

No Covariates Covariates No Covariates Covariates
(1) (2) (3) (4)

Panel A. Students in Subgroup

τi∈g
0.066** 0.053** 0.055** 0.028*
(0.026) (0.021) (0.025) (0.017)

Panel B. Students Not in Subgroup

τi/∈g
0.037 0.008 0.051** 0.013

(0.027) (0.018) (0.024) (0.009)

Panel C. Difference-in-Discontinuity

τdiff
0.030 0.046*** 0.004 0.015

(0.029) (0.016) (0.030) (0.017)

Observations 3,310 3,292 3,310 3,292

Notes: Number of observations are given for Panel C: Panel A and B have half that
number of observations each. Grade 3 results are missing for the 2005-06 school year
due to missing data on the math pre-test for that year. The bandwidth used is five. All
columns include subgroup and year fixed-effects. Covariates include controls for grade
2 test scores, gender, grade, ethnicity, gifted status, English learner status, free lunch
status, and grade configuration, subgroup and year fixed-effects. Standard errors are
clustered on sixty student-by-subgroup clusters, following Lee and Card (2008). ***,**
and * denote significance at the 1%, 5% and 10% levels, respectively.
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Table 3: Regression-Discontinuity Estimates of
Subgroup-Specific Accountability on Student

Achievement by Grade

Outcome: Math Scores (σ)
Grade 3 Grade 4 Grade 5

(1) (2) (3)

Panel A. Students in Subgroup

τi∈g
0.048** 0.073*** -0.002
(0.024) (0.024) (0.025)

Panel B. Students Not in Subgroup

τi/∈g
-0.017 0.028 -0.020
(0.022) (0.018) (0.019)

Panel C. Difference-in-Discontinuity

τdiff
0.066*** 0.045** 0.018
(0.020) (0.018) (0.020)

Observations 1,798 2,317 2,126

Notes: The number of observations is given in Panel C:
Panel A and B have half that number of observations
each. The 2002-03 school year is omitted to maintain
the same sample in Table 4. Grade 3 results are missing
for the 2005-06 school year due to missing data on the
math pre-test for that year. The bandwidth used is five.
Covariates include controls for prior test scores, gender,
ethnicity, gifted status, English learner status, free lunch
status, and grade configuration, subgroup and year fixed
effects. Standard errors are clustered on sixty student-
by-subgroup clusters, following Lee and Card (2008).
***,** and * denote significance at the 1%, 5% and 10%
levels, respectively.
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Table 4: Estimates of Subgroup-Specific Accountability on Student
Achievement by Grade and Prior Treatment Status

Outcome: Math Scores (σ)
Prior Period Treatment Status: Treated Untreated Difference

τ
(T,T )
t τ

(U,T )
t τ

(T,T )
t − τ (U,T )

t

Panel A. Period 1 (i.e., Grade 3)

τ1 (‘Placebo’)
0.192** 0.164* 0.028
(0.084) (0.084) (0.119)

Panel B. Period 2 (i.e., Grade 4)

τ2
0.320*** 0.132* 0.189*
(0.079) (0.075) (0.109)

Panel C. Period 3 (i.e., Grade 5)

τ3
0.069 -0.103 0.172

(0.108) (0.086) (0.138)

Covariates Yes Yes Yes

Observations in Panel A 161 162 323
Observations in Panel B 211 229 440
Observations in Panel C 206 202 408

Notes: Observations are at the school-subgroup-year level and include only students who
belong to the accountable subgroup. The 2002-03 school year is omitted since estimates
for grades 4 and 5 must condition on the prior year treatment status. Grade 3 results are
missing for the 2005-06 school year due to missing data on the math pre-test for that year.
The bandwidth used is five. Covariates include controls for prior test scores, gender, ethnicity,
gifted status, English learner status, free lunch status, and grade configuration, subgroup and
year fixed-effects. Standard errors are clustered on student-by-subgroup clusters, following
Lee and Card (2008). ***,** and * denote significance at the 1%, 5% and 10% levels,
respectively.
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Table 5: Student Achievement under Counterfactual Policies

Outcome: Math Scores (σ)

Accountability Average S.D. of Black-White SES Test
Scheme Achievement Achievement Test Score Gap Score Gap

(1) (2) (3) (4)

No Child Left Behind 0.88 1.03 0.57 0.53
Current Threshold (δ = 0)

Counterfactuals

No Accountability 0.70 1.10 0.70 0.64
Scheme

Fixed-Target 0.97 1.11 0.71 0.64
Higher Threshold (δ = 0.9)

Traditional Value-Added 0.95 1.10 0.70 0.64
(k = 1, ζ1 = 0.148)

Multiperiod Value-Added 1.13 1.10 0.70 0.64
(k = 2, ζ2 = 0.385)

Multiperiod Value-Added, with 1.12 1.08 0.57 0.60
NCLB Black-White Gap (k = 2, bb = 1.075,

bw = 0.967, ζb2 = 0.389, ζw2 = 0.312)

Notes: All counterfactuals rely on the structural estimates from column (1) of Appendix Table A4 (see Section 7 for
more detail). For column (1) only, the achievement measure is in standard deviation units that are relative to the
current NCLB achievement threshold. These can be put in terms of the current test score distribution by subtracting
0.70σ. For columns (2)-(4) the inequality measures are in math score standard deviation units. The SES test score
gap is the average difference in test scores between SES and non-SES students.
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A Proofs

Proposition 1 If schools invest optimally, Sit ≥ Si,t+1 ≥ ... ≥ SiT , ∀i in expectation.

Proof.: Consider student i with the same realization of Γit and Γi,t+1 in periods t and t+ 1. The result then

follows directly from the FOCs w.r.t. to Sit and Si,t+1, ∀i:

∂Ui
Sit

: Γit · b · h[Ait −A∗]
∂ft(·)
∂Sit

+ pi · b · h[Ai,t+1 −A∗]
∂ft+1(·)
∂Sit

+ ...+ pi · b · h[AiT −A∗]
∂fT (·)
∂Sit

≤ c′(Sit)

∂Ui
Si,t+1

: Γi,t+1 · b · h[Ai,t+1 −A∗]
∂ft+1(·)
∂Si,t+1

+ ...+ pi · b · h[AiT −A∗]
∂fT (·)
∂Si,t+1

≤ c′(Si,t+1) .

If h[Ait − A∗] ≥ h[Ai,t+1 − A∗], then the result follows immediately. In the case that h[Ait − A∗] <

h[Ai,t+1−A∗], suppose Si,t+1 > Sit. Then, the school can recreate the time t+1 investment profile at time t

by setting Si,t−1 and Sit at the same values as Sit and Si,t+1, respectively. Then h[Ait−A∗] = h[Ai,t+1−A∗]

and since ∂ft(·)
∂Sit

≥ ∂ft+1(·)
∂Si,t+1

(by assumption), it must be that h[Ait − A∗]∂ft(·)∂Sit
≥ h[Ai,t+1 − A∗]∂ft+1(·)

∂Si,t+1
, and

so forth, until the last term of the FOC w.r.t. Sit. Since that additional term is non-negative (since b ≥ 0,

pi ≥ 0, h[·] ≥ 0 and ∂ft(·)
∂Sit

≥ 0), it follows that a school that slightly reduces its investment at time t (or

t − 1) still receives the same utility as the investment profile where Si,t+1 > Sit, but at a lower cost. It

follows that setting Si,t+1 > Sit is suboptimal and therefore it must be that Sit ≥ Si,t+1.

Proposition 2 Within a subgroup, school inputs are highest for some student(s) with innate ability below

the achievement threshold.

Proof.: Let δ > 0 be an arbitrarily small constant. Consider students i and j in year t such that pi = pj ,

Γit = Γjt, and αj = αi + δ and assume that αj ≥ A∗. From Equation 3.6 for period t, we have that:

c′(Sit) = Γit ·b · h[ft(αi, Si1, ..., Sit)−A∗]
∂ft(·)
∂Sit

+ ...+ pi ·b · h[fT (αi, Si1, ..., SiT )−A∗]∂fT (·)
∂Sit

≥ Γjt ·b · h[ft(αi + δ, Si1, ..., Sit)−A∗]
∂ft(·)
∂Sit

+ ...+ pj ·b · h[fT (αi + δ, Si1, ..., SiT )−A∗]∂fT (·)
∂Sit

= Γjt ·b · h[ft(αj , Sj1, ..., Sjt)−A∗]
∂ft(·)
∂Sjt

+ ...+ pj ·b · h[fT (αj , S1t, ..., SjT )−A∗]∂fT (·)
∂Sjt

= c′(Sjt)

∴ c′(Sit) ≥ c′(Sjt) =⇒ Sit ≥ Sjt ,

where the inequality follows because δ > 0, f(αi,0) = αi, and ∂ft(·)
∂Sit

≥ 0 ∀t, so it must be that

ft(αi, Si1, ..., Sit)−A∗ ≤ ft(αj , Sj1, ..., Sjt)−A∗ ∀t. Finally, since f(αj ,0) ≥ A∗ and the error term is sym-

metric, unimodal and mean zero, this implies that h(ft(αi, Si1, ..., Sit)−A∗) ≥ h(ft(αi+δ, Si1, ..., Sit)−A∗),

∀t when δ is arbitrarily close to zero.
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Proposition 3 τ
(T,T )
2 > τ

(U,T )
2 iff β12 > 0.

Proof. Rearranging Equations 4.5 and 4.6 gives:

τ
(T,T )
2 − τ (U,T )

2 =(S̄
(T,T )
2 − S̄(U,T )

2 )− (S̄
(T,U)
2 − S̄(U,U)

2 )+
1

N

N∑
i

β12

[
(S

(T )
i1 − S

(U)
i1 )(S

(T,T )
i2 − S(T,U)

i2 )(S
(U,T )
i2 − S(U,U)

i2 )
]

(A.1)

Since achievement is increasing in school inputs, we have that S̄
(T,T )
2 > S̄

(T,U)
2 , S̄

(U,T )
2 > S̄

(U,U)
2 , and S̄

(T )
1 >

S̄
(U)
1 . Now, suppose β12 > 0: then, the FOCs (given by Equation 3.6) from the school problem require that

S
(T,T )
i2 ≥ S

(U,T )
i2 ∀i since ∂f2(·)

∂S
(T,T )
i2

≥ ∂f2(·)
S

(U,T )
i2

. The school problem also implies S
(T,U)
i2 ≥ S

(U,U)
i2 , implying that

τ
(T,T )
2 >τ

(U,T )
2 since the first two terms in Equation A.1 are non-negative and the dynamic complementarity

term in positive. Similarly, τ
(T,T )
2 > τ

(U,T )
2 implies that β12 > 0, because if β12 ≤ 0 then by the school

problem S
(T,T )
i2 ≤ S(U,T )

i2 and S
(T,U)
i2 ≤ S(U,U)

i2 , indicating that τ
(T,T )
2 < τ

(U,T )
2 ; a contradiction.

Proposition 4 If ability is additively separable, then school inputs are independent of student ability.

Proof.: If ability, αi, is additively separable, then h[Ait − Ai,t−k − ζk] = h[ft(αi, Si1, ..., Sit) −

ft(αi, Si1, ..., Si,t−k) − ζk] = h[αi + ft(Si1, ..., Sit) − αi − ft(Si1, ..., Si,t−k) − ζk] = h[ft(Si1, ..., Sit) −

ft(Si1, ..., Si,t−k)− ζk] ∀t, k. The first-order conditions are therefore independent of αi.

Proposition 5 If the test score improvement target ζk = ζ ∀k, school inputs are increasing in the number

of years (k) that the test score used to determine the student-specific targets is lagged.

Proof.: The first-order condition for period t investment under a value-added scheme of type k is:

∂Ui
Sit

: b · h[Ait −Ai,t−k − ζ]
∂Ait
∂Sit

+ ...+ b · h[Ai,t+k −Ai,t − ζ]

(
∂Ai,t+k
∂Sit

− ∂Ait
∂Sit

)
+ ...+ b · h[AiT −Ai,T−k − ζ]

(
∂AiT
∂Sit

− ∂Ai,T−k
∂Sit

)
= c′(Sit) , (A.2)

while the first-order condition for period t investment under a value-added scheme of type k + 1 is:

∂Ui
Sit

: b · h[Ait −Ai,t−k−1 − ζ]
∂Ait
∂Sit

+ ...+ b · h[Ai,t+k+1 −Ai,t − ζ]

(
∂Ai,t+k+1

∂Sit
− ∂Ait
∂Sit

)
+ ...+ b · h[AiT −Ai,T−k−1 − ζ]

(
∂AiT
∂Sit

− ∂Ai,T−k−1
∂Sit

)
= c′(Sit) . (A.3)

The above FOCs are identical except for the effect of period t investment on the target (i.e., the negative
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derivative) from period t+ k onward. For the value-added scheme of type k, these terms are:

−b(h[Ai,t+k−Ait − ζ]
∂Ait
∂Sit

+ h[Ai,t+k+1−Ai,t+1 − ζ]
∂Ai,t+1

∂Sit
+ ...+ h[AiT −Ai,T−k − ζ]

∂Ai,T−k
∂Sit

) , (A.4)

while for the value-added scheme of type k + 1, these terms are:

−b(h[Ai,t+k+1 −Ait − ζ]
∂Ait
∂Sit

+ ...+ h[AiT −Ai,T−k−1 − ζ]
∂Ai,T−k−1

∂Sit
) . (A.5)

There is an extra negative term for period t+k in Equation A.4. In addition, we have that Ai,t+k+1−Ait ≥

Ai,t+k − Ait. Therefore, it must be the case that h[Ai,t+k+1 − Ait − ζ] < h[Ai,t+k − Ait − ζ] since ζ ≥ 0.

This holds true for periods t+ k + 1 to T . Therefore, Equation A.4 is more negative than Equation A.5. It

follows that Sit in the value-added scheme of type k + 1 is higher than for the scheme of type k ∀k, t.
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B Identifying Teacher Effort

The estimation procedure builds upon the approach in Macartney et al. (2016) and consists of three

steps:

1. Teacher Fixed-Effects: As a first step, teacher-year fixed-effects are calculated by regressing

contemporaneous test scores on prior test scores and other student characteristics. Formally, I calculate

teacher-year fixed effects separately for each grade using the regression:

yijt = ω(yij,t−1) + βZijt + qjt + vijt , (B.1)

where yijt are test scores of student i in class j at time t, ω(·) is some flexible functional form, qjt is teacher

quality, Zijt is a control vector that includes student race, gender, disability status, gifted status and limited

English-proficiency status, and vijt is the error term. Teacher-year fixed effects are given by:

q̂jt =
∑
i=1

ŷijt − ω̂(yij,t−1)− β̂Zijt
njt

= aj + ejt(gjt) + v̄jt , (B.2)

where the second equality comes from the fact that teacher year fixed effects consist of ability and incentive-

invariant effort, aj , and incentive varying effort, which I label as ejt. Teacher effort in this setting is a

function the proportion of subgroup-specific students, gjt, in teacher j’s class at time t.

2. Estimating Teacher Ability: Consistent with much of the literature, teacher ability is assumed

to be fixed over time. Each teacher’s ability is then calculated by averaging teacher-year fixed-effects over

all non-current years. Formally, for a teacher with Tj years of teaching, her ability at time τ is:

ajτ =

Tj∑
τ 6=t

q̂jτ
Tj − 1

−
Tj∑
τ 6=t

ejt(gjt)

Tj − 1
− v̄jt =

Tj∑
τ 6=t

q̂jτ
Tj − 1

+ η̄jt , (B.3)

where the term η̄jt captures the error term and average effort over non-current years.

3. Identifying Subgroup-Specific Effort: To identify the increase in teacher effort associated with

facing subgroup-specific accountability, I approximate the underlying effort function with a linear functional

form so that average subgroup-specific effort is given by ẽ = π2gjt. I now use the RD design to capture

accountability-induced effort responses. First, define the teacher-year fixed-effect residual, ζjt, as:

ζjt = q̂jt − ajτ + η̄jt (B.4)
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To implement the design, I define the estimated teacher-year fixed effect residual ζ̂jt = q̂jt − âjτ .66

Then, I obtain teacher effort as a function of the number of students in a given subgroup in her class, ζ̂jt.

From this, I can take advantage of the fact that teachers in a school with fewer than forty students face no

accountability under NCLB for those students, while teachers in a school with forty or more students face

accountability pressure for those students. I therefore contrast the residual for teachers in a school with

more than forty students in a subgroup, ζRHS
jt , with the residual for teachers where there are fewer than

forty students in that subgroup in the school, ζLHS
jt . Since subgroup accountability only holds for schools

with more than forty students in a subgroup, we have:

ζLHS
jt = q̂jt − aj + η̄jt,

ζRHS
jt = q̂jt − aj + η̄jt + π2gjt .

(B.5)

(B.6)

Subgroup-specific effort is then defined as the difference between these two relationships, on either side of

the forty student threshold:

ẽjt = π2gjt = ζRHS
jt − η̄RHS

jt − ζLHS
jt + η̄LHS

jt . (B.7)

The forty or more line, the less than forty line, and the difference between lines are reported in Appendix

Figure A7, giving the estimated π̂2 coefficients for Equations B.5, B.6, and B.7, respectively.

66I also control for the number of ‘marginal’ students in the classroom to capture any increase in teacher
effort caused by students with different ability levels being assigned in a systematic way to their class.
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C Literature Exploring Dynamic Complementarities

Paper Data Research Design Findings

Todd and

Wolpin (2007)

Use the NLSY/79-CS, a sample of

all children born to individuals in

the NLSY/79. The data provide

test scores, measures of the child’s

home environment, mother char-

acteristics, and county-level mea-

sures of school quality.

Estimate a cumulative production

function for children’s cognitive

achievement that allows achieve-

ment to depend on innate ability,

mother’s abilities, and the lifetime

history of family and school inputs.

Identify the model with value-

added specifications and child and

sibling fixed-effects.

Estimates strongly support the no-

tion that skill acquisition is a cu-

mulative process. School input

effects are imprecisely measured.

Specification tests point toward in-

corporating lagged inputs, consis-

tent with there being input com-

plementarities across time.

Cunha and

Heckman

(2008)

Estimate the technology on a sam-

ple of 2,207 first-born white chil-

dren from the NLSY/79. Use

multiple measures of cognitive

and non-cognitive skills as outputs

(and inputs) in their estimation.

Estimate a dynamic factor model

that exploits cross-equation re-

strictions to secure identification.

To deal with the endogeneity of in-

puts, use next-period skills and in-

vestments as an instrument for cur-

rent period skills and investments.

Parental inputs have different ef-

fects at different stages of the

child’s life cycle, with cognitive

skills affected more at early ages

and noncognitive skills affected

more at later ages.

Heckman,

Moon, Pinto,

Savelyev, and

Yavitz (2010)

Use data from the HighScope

Perry Preschool Program, which

was conducted in the 1960s and

targeted disadvantaged children in

Ypsilanti, Michigan.

Use statistical corrections to the

compromised HighScope Perry

Preschool Program randomiza-

tion to find the effects of early

investments on later outcomes.

Perry Preschool treatment effects

are substantial. Find the largest

effects on cognitive achievement

among those at the top of the dis-

tribution, consistent with a com-

plementarity between early human

capital and later investments.

Cunha,

Heckman, and

Schennach

(2010)

Estimate the technology on a sam-

ple of 2,207 first-born white chil-

dren from the NLSY/79. Use

multiple measures of cognitive

and non-cognitive skills as outputs

(and inputs) in their estimation.

Paper formulates and estimates

multistage production functions

for children’s skills using a dy-

namic factor model. To deal

with the endogeneity of inputs, use

lagged parental income as an in-

strument for current period child

investment.

Find that substitutability de-

creases in later stages of the life

cycle. It is therefore optimal

to invest relatively more in the

early stages of childhood than

in later stages. Find that the

technology features parental input

complementarity across time.
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Aizer and

Cunha (2012)

Use data from the National Col-

laborative Perinatal Project, which

contain comprehensive information

for roughly 59,000 births between

1959 and 1965. Use the Bayley

scores of development as a measure

of a child’s initial human capital

stock and IQ or test scores as later

measures of human capital.

Exploit exogenous variation in in-

vestment from the roll-out of Head

Start in 1966 across children in the

same household. Then search for

differential effects among children

with different stocks of human cap-

ital.

Find that preschool enrollment has

a positive and significant impact

on four-year IQ for all, but that

the impact is largest for those with

higher early stocks of cognitive hu-

man capital.

Lubotsky and

Kaestner

(2016)

Use data from the Early Childhood

Longitudinal Study Kindergarten

Class of 1998-99, which cover ap-

proximately 15,000 students from

a random sample of over 1,000

kindergarten classrooms. Use test

scores as cognitive skill measures

and also have five measures of

noncognitive skills. They also use

the NSLY/79.

Instrument the actual kinder-

garten entrance age with the en-

trance age of the child if she

had followed the state entrance

law. Then investigate whether

children who start kindergarten at

an older age – thus having a higher

stock of skill – have faster test

score growth than children starting

kindergarten at a younger age.

Children beginning kindergarten

at an older age have higher

measures of cognitive and non-

cognitive achievement at the start

of kindergarten and have their cog-

nitive scores grow at a faster rate

(by 0.11σ) during kindergarten

and first grade – consistent with

complementarities in human capi-

tal accumulation.

Malamud,

Pop-Eleches,

and Urquiola

(2016)

Use administrative data from Ro-

mania containing all the children

who were allocated to a high school

in the years 2005 and 2006.

Combine a shock to initial child

ability with a later shock to school-

ing inputs. The shock to initial

ability comes from a difference-

in-differences design taking advan-

tage of a change in the abor-

tion law, while the schooling in-

puts shock comes from a regression

discontinuity design where school

quality was effectively randomized.

Find no direct evidence of dynamic

complementarities, noting that the

authors also discover suggestive ev-

idence that parents and children

behave in ways that would tend to

undo dynamic complementarities.
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D Appendix Figures and Tables
Figure A1: Reduced-Form (Math)

Black Subgroup: Diff-in-Disc Estimate: 0.042 (0.053)

(a) Student is Black
RD Estimate: 0.093* (0.048)
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(b) Student is Not Black
RD Estimate: 0.051 (0.064)
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Disadvantaged Subgroup Diff-in-Disc Estimate: 0.152* (0.082)

(c) Student is Disadvantaged
RD Estimate: 0.094 (0.072)
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(d) Student is Not Disadvantaged
RD Estimate: -0.058 (0.082)
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White Subgroup Diff-in-Disc Estimate: -0.013 (0.072)

(e) Student is White
RD Estimate: -0.001 (0.106)
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(f) Student is Not White
RD Estimate: 0.012 (0.079)
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Notes: Figures for the black, disadvantaged and white subgroup are based on 558, 330 and 248 obser-
vations, respectively. Each RD estimate is from a separate local linear regression allowing for different
functions on either side of the threshold. The bandwidth used is five. Dashed lines represent 90% con-
fidence intervals, with standard errors clustered at the school level. ***,** and * denote significance at
the 1%, 5% and 10% levels, respectively. 80



Figure A2: Reduced-Form (Reading)

Black Subgroup: Diff-in-Disc Estimate: 0.028 (0.051)
(a) Student is Black

RD Estimate: 0.080* (0.044)
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(b) Student is Not Black
RD Estimate: 0.053 (0.060)
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Disadvantaged Subgroup Diff-in-Disc Estimate: 0.086 (0.081)

(c) Student is Disadvantaged
RD Estimate: 0.078 (0.064)
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(d) Student is Not Disadvantaged
RD Estimate: -0.007 (0.072)
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White Subgroup Diff-in-Disc Estimate: -0.093 (0.072)

(e) Student is White
RD Estimate: -0.032 (0.103)
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(f) Student is Not White
RD Estimate: 0.061 (0.074)
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Notes: Figures for the black, disadvantaged and white subgroup are based on 558, 330 and 248 obser-
vations, respectively. Each RD estimate is from a separate local linear regression allowing for different
functions on either side of the threshold. The bandwidth used is five. Dashed lines represent 90% con-
fidence intervals, with standard errors clustered at the school level. ***,** and * denote significance at
the 1%, 5% and 10% levels, respectively. 81



Figure A3: Bandwidth Sensitivity

(a) Math Scores (σ)
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(b) Reading Scores (σ)
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(c) Structural Parameter Estimate: β̂12
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(d) Structural Parameter Estimate: ψ̂
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Notes: Figures A3(a) and A3(b) plot RD estimates for τi∈g from Table 2 for a variety of bandwidth values.
Covariates are included. Similarly, Figures A3(c) and A3(d) plot structural parameter estimates for a
variety of bandwidth values. The bandwidth of one is omitted due to high standard errors. The vertical
line represents the chosen bandwidth and the horizontal line represents an estimate of zero. The dashed
lines are 90% confidence intervals. Following Lee and Card (2008), standard errors are clustered on sixty
student-by-subgroup clusters for Figures A3(a) and A3(b) and are bootstrapped for Figures A3(c) and A3(d).
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Figure A4: Placebo Subgroup Rules

(a) Math Scores (σ)

(b) Reading Scores (σ)

Notes: The figures plot RD point estimates for τi∈g from Table 2 for a variety of placebo subgroup
rules. The placebo subgroup rules vary from thirty to fifty students. Covariates are included.
The bandwidth used is five and the vertical line represents the true subgroup rule of forty. The
horizontal line represents a parameter estimate of zero and the vertical dashed lines are 90 percent
confidence intervals. Standard errors are clustered on sixty student-by-subgroup clusters, following
Lee and Card (2008).
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Figure A5: Estimated Treatment Effects by Grade and Expectations

(a) Grade 3 (τ̂3
i∈g)
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(b) Grade 4 (τ̂4
i∈g))
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(c) Grade 5 (τ̂5
i∈g)
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Notes: The figures plot τ̂3i∈g, τ̂
4
i∈g, and τ̂5i∈g for various grade 3 subgroup cohort sizes (relative to grade 4 and

grade 5), which schools should use to form their expectations of future treatment. The x-axis represents the
number of students belonging to a subgroup in grade 3, divided by the number of students in that subgroup
in grades 3, 4, and 5. The unit for the x-axis is percentage points. The vertical line denotes zero on the x-
axis, which occurs when the number of grade 3 students in the subgroup is identical to the average subgroup
cohort size in grades 4 and 5 (i.e. thirty-three percent). The horizontal line denotes a RD estimate of zero.
Dashed lines represent 90% confidence intervals with standard errors clustered on sixty student-by-subgroup
clusters, following Lee and Card (2008). 84



Figure A6: Structural Estimates under Uncertainty

(a) Structural Parameter Estimate: β̂12
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(b) Structural Parameter Estimate: ψ̂
b

0
5

10
15

20
E

st
im

at
ed

 y
/b

 P
ar

am
et

er

10.50 0.60 0.70 0.80 0.90
Expectation of Treatment in Period 2 (E[Gi2=1])

Notes: The panels plot the structural estimates of β̂12 and ψ̂
b for a variety of school expectations for

the probability of period two treatment. See Section 8.1 for a further description. The bandwidth used
is five and the vertical line represents the rational expectation case used in the structural estimation
(which corresponds to the parameter estimates in Column (1) of Appendix Table A4). The horizontal
line represents a parameter estimate of zero and the vertical dashed lines are 90 percent confidence
intervals. Standard errors are bootstrapped.
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Figure A7: Identifying Effort

(a) Effort
Difference between lines: 0.051* (s.e. 0.030)

b=0.014 (s.e. 0.020)

b=0.065***(s.e. 0.021)
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Notes: Squares and triangles represent binned means for the forty or more and less than forty
students in a subgroup lines, respectively. Figure A7 is based on 3,861 and 4,391 classroom-year
observations for the forty or more and less than forty lines, respectively. Due to few observation
after thirty percent, the x-axis is restricted to below thirty percent. Slope estimates are indicated
below each line and are for the full sample. Standard errors are clustered at the school level due
to an insufficient number of student-by-subgroup clusters. ***,** and * denote significance at the
1%, 5% and 10% levels, respectively.
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Figure A8: Alternative Mechanisms

Teacher Value-Added
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(b) Student does not belong to Subgroup
RD Estimate: 0.004 (0.005)
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(c) Student belongs to Subgroup

RD Estimate: 0.037 (0.029)
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(d) Student does not belong to Subgroup
RD Estimate: 0.030 (0.031)
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(e) Student belongs to Subgroup

RD Estimate: 0.347 (0.216)
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(f) Student does not belong to Subgroup
RD Estimate: 0.330 (0.211)
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Notes: All figures are based on 1,626 observations. Figures and RD estimates control for subgroup fixed
effects. Each RD estimate is from a separate local linear regression allowing for different functions on
either side of the threshold. The bandwidth used is five. Dashed lines represent 90% confidence intervals
with standard errors clustered on sixty student-by-subgroup clusters, following Lee and Card (2008).
***,** and * denote significance at the 1%, 5% and 10% levels, respectively.
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Table A1: Tests of Discontinuities in Observable Covariates

Grade 2 Grade 2 Percent Percent Percent Percent Percent Percent Percent Percent Percent
Math
Scores

Reading
Scores

Black White Hispanic Asian
Disad-

vantaged
EL1 SWD2 Gifted Male

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A. Students Belong to Subgroup

# in subgroup≥40 0.030 0.048* -2.30 2.30 0.57 0.03 -0.09 0.29 -0.23 -0.91 -0.03
(0.030) (0.025) (1.61) (1.67) (0.52) (0.20) (1.42) (0.98) (0.57) (0.79) (0.81)

Joint Significance Test (Prob>χ2) 0.195

B. Students do Not Belong to Subgroup

# in subgroup≥40 0.048 0.047* -2.17* 2.14 -0.72 0.25 -2.99* -0.59 -0.28 0.21 -0.55
(0.032) (0.027) (1.11) (1.52) (0.86) (0.39) (1.59) (0.62) (0.28) (1.03) (0.50)

Joint Significance Test (Prob>χ2) 0.893

C. Difference in Covariates

# in subgroup≥40 -0.018 0.000 -0.13 0.17 1.29 -0.23 2.90* 0.88 0.05 -1.11 0.52
(0.034) (0.022) (1.41) (1.46) (1.00) (0.42) (1.57) (1.17) (0.63) (0.78) (0.98)

Observations 3,292 3,292 3,292 3,292 3,292 3,292 3,292 3,292 3,292 3,292 3,292

Joint Significance Test (Prob>χ2) 0.782

1 EL is an acronym for ‘English learners.’
2 SWD is an acronym for ‘students with learning disabilities.’

Notes: The number of observations is given in Panel C: Panels A and B have half that number of observations each. Each cell represents results for
a separate local linear regression allowing for different functions on either side of the threshold. The bandwidth used is five. Subgroup fixed-effects
are included. Standard errors are clustered on sixty student-by-subgroup clusters, following Lee and Card (2008). The joint significance test reports
the p-value from a hypothesis test with a null hypothesis that all covariates are jointly continuous at the threshold for that panel. ***,** and *
denote significance at the 1%, 5% and 10% levels, respectively.

88



Table A2: Tests of Discontinuities and Level Differences in Observable Covariates, by
Treatment Status for Period Two

Percent Percent Percent Percent Percent Percent Percent Percent Percent

Black White Hispanic Asian
Disad-

vantaged
EL1 SWD2 Gifted Male

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Treated Last Year

# in subgroup≥40 0.77 -2.99 2.38 -0.49 0.14 -1.44 1.12 -1.49 1.18
(1.55) (3.60) (2.38) (0.31) (4.04) (1.81) (0.97) (0.97) (2.08)

Joint Significance Test (Prob>χ2) 0.513

B. Untreated Last Year

# in subgroup≥40 -0.25 -0.65 -0.43 1.13 2.27 -2.97* 1.43* 2.38 1.57
(1.09) (1.81) (0.40) (1.13) (1.93) (1.70) (0.77) (1.72) (1.74)

Joint Significance Test (Prob>χ2) 0.122

C. Difference in Covariates

# in subgroup≥40 1.02 -2.34 2.81 -1.62 -2.13 1.53 -0.31 -3.86** -0.39
(1.29) (2.51) (2.54) (1.42) (3.90) (1.52) (1.09) (1.82) (1.87)

Joint Significance Test (Prob>χ2) 0.083

D. Difference in Levels

Treated Last Year 0.64 -0.56 0.47 -0.48 2.69 0.94 -0.71 -0.55 -0.32
(0.40) (0.58) (0.63) (0.38) (1.64) (0.94) (0.48) (0.81) (0.83)

Observations 1,127 1,127 1,127 1,127 1,127 1,127 1,127 1,127

Joint Significance Test (Prob>χ2) 0.281

1 EL is an acronym for ‘English learners.’
2 SWD is an acronym for ‘students with learning disabilities.’

Notes: This table looks for discontinuities or a difference in levels between period two (i.e. grade 4) students in schools that
were treated and were not treated in the prior year. The number of observations is given in Panel D: Panel C has the same
number of observations, while Panels A and B have about half that number of observations each. Panels A and B check for
discontinuities in covariates at the threshold for students who were and were not treated in the prior period. Panel C then
tests whether the difference-in-discontinuities between Panels A and B are statistically different. Finally, Panel D checks
whether the samples underlying Panel A and B differ significantly. For Panels A, B, and C, each cell represents results for
a separate local linear regression allowing for different functions on either side of the threshold, while each cell in Panel
D represents a difference-in-means test. The bandwidth used is five. Subgroup fixed effects are included. Standard errors
are clustered on sixty student-by-subgroup clusters, following Lee and Card (2008). The joint significance test reports the
p-value from a hypothesis test with a null hypothesis that all coefficients are jointly zero for that panel. ***,** and *
denote significance at the 1%, 5% and 10% levels, respectively.
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Table A3: Test Scores by Subgroup

Black White Hispanic Asian Multi-Racial Native Disadvantaged
American

(1) (2) (3) (4) (5) (6) (7)

Mean (S.D.) Test Scores

Math Scores (σ) -0.473 0.318 -0.206 0.568 0.019 -0.297 -0.349
(0.257) (0.335) (0.311) (0.612) (0.456) (0.450) (0.260)

Reading Scores (σ) -0.425 0.308 -0.356 0.281 0.053 -0.309 -0.359
(0.241) (0.297) (0.322) (0.584) (0.437) (0.450) (0.233)

Observations 418,659 844,606 117,004 31,010 45,150 19,052 701,183
(student-level)

Notes: The entire sample is used. The table reports average test scores for students in each subgroup across all grades.
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Table A4: Robustness: Estimates Using
Different Functional Forms

Outcome Variable: Math Test Scores (σ)

Linear Quadratic Triangular Kernel
(1) (2) (3)

A. Reduced-Form Estimates

τi∈g
0.053** 0.069** 0.059***
(0.021) (0.031) (0.020)

τi/∈g
0.008 0.036 0.017

(0.018) (0.028) (0.017)

τdiff
0.046*** 0.033 0.042***
(0.016) (0.024) (0.015)

B. Structural Estimates

β12
10.24*** 12.81*** 7.46**

(3.22) (2.93) (3.79)

ψ
b

10.10*** 10.67*** 9.00***
(1.55) (1.10) (1.65)

Notes: Results for the reduced form estimates under a triangular kernel functional form are identical to the results
reported in column (2) of Table 2. Covariates are included. The bandwidth used is five. For Panel A, standard errors
are clustered on sixty student-by-subgroup clusters, following Lee and Card (2008). For Panel B, standard errors are
bootstrapped with 250 repetitions. Significance levels: *** 1 percent; ** 5 percent; * 10 percent.
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Table A5: Estimates of Within-Classroom Spillovers

Outcome: Math Scores (σ)

RHS (i.e. Xsgt ≥ 40) LHS (i.e. Xsgt < 40) Difference
(1) (2) (3)

Panel A. Students not belonging to Subgroup

Proportion of Accountable -0.022 0.052 -0.074
Students in a Class (0.046) (0.042) (0.059)

Panel B. Students belonging to Subgroup

Proportion of Accountable 0.020 -0.023 0.043
Students in a Class (0.058) (0.055) (0.074)

Observations 5,271 5,733 11,004
(school-subgroup-class-year)

Notes: RHS and LHS are acronyms for right- and left-hand side of the forty student threshold.
Column (1) reports the relationship between the number of students in a subgroup in a class
when there are forty or more of these students at the school. Column (2) reports the same
relationship when there are less than forty of these students at the school. Sample is restricted
to the RD sample and a triangular kernel is used to put more weight on observations closer
to forty students in the subgroup at the school. Covariates are included. Standard errors
are clustered at the school level due to an insufficient number of student-by-subgroup clusters.
***,** and * denote significance at the 1%, 5% and 10% levels, respectively.
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